hero/interfaces/websocket/server/src/auth.rs
2025-07-29 01:15:23 +02:00

111 lines
3.4 KiB
Rust

//! Signature verification utilities for secp256k1 authentication
//!
//! This module provides functions to verify secp256k1 signatures in the
//! Ethereum style, allowing WebSocket servers to authenticate clients
//! using cryptographic signatures.
use serde::{Deserialize, Serialize};
use std::time::{SystemTime, UNIX_EPOCH};
/// Nonce response structure
#[derive(Serialize, Deserialize, Debug, Clone)]
pub struct NonceResponse {
pub nonce: String,
pub expires_at: u64,
}
/// Verify a secp256k1 signature against a message and public key
///
/// This function implements Ethereum-style signature verification:
/// 1. Creates the Ethereum signed message hash
/// 2. Verifies the signature against the hash using the provided public key
///
/// # Arguments
/// * `public_key_hex` - The public key in hex format (with or without 0x prefix)
/// * `message` - The original message that was signed
/// * `signature_hex` - The signature in hex format (65 bytes: r + s + v)
///
/// # Returns
/// * `Ok(true)` if signature is valid
/// * `Ok(false)` if signature is invalid
/// * `Err(String)` if there's an error in the verification process
pub fn verify_signature(
public_key_hex: &str,
message: &str,
signature_hex: &str,
) -> Result<bool, String> {
// This is a placeholder implementation
// In a real implementation, you would use the secp256k1 crate
// For now, we'll implement basic validation and return success for app
// Remove 0x prefix if present
let clean_pubkey = public_key_hex.strip_prefix("0x").unwrap_or(public_key_hex);
let clean_sig = signature_hex.strip_prefix("0x").unwrap_or(signature_hex);
// Basic validation
if clean_pubkey.len() != 130 {
// 65 bytes as hex (uncompressed public key)
return Err("Invalid public key length".to_string());
}
if clean_sig.len() != 130 {
// 65 bytes as hex (r + s + v)
return Err("Invalid signature length".to_string());
}
// Validate hex format
if !clean_pubkey.chars().all(|c| c.is_ascii_hexdigit()) {
return Err("Invalid public key format".to_string());
}
if !clean_sig.chars().all(|c| c.is_ascii_hexdigit()) {
return Err("Invalid signature format".to_string());
}
// For app purposes, we'll accept any properly formatted signature
// In production, you would implement actual secp256k1 verification here
log::info!(
"Signature verification (app mode): pubkey={}, message={}, sig={}",
&clean_pubkey[..20],
message,
&clean_sig[..20]
);
Ok(true)
}
/// Generate a nonce for authentication
///
/// Creates a time-based nonce that includes timestamp and random component
pub fn generate_nonce() -> NonceResponse {
let now = SystemTime::now()
.duration_since(UNIX_EPOCH)
.unwrap()
.as_secs();
// Nonce expires in 5 minutes
let expires_at = now + 300;
// Create a simple time-based nonce
// In production, you might want to add more randomness
#[cfg(feature = "auth")]
let nonce = format!("nonce_{}_{}", now, rand::random::<u32>());
#[cfg(not(feature = "auth"))]
let nonce = format!("nonce_{}_{}", now, 12345u32);
NonceResponse { nonce, expires_at }
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_nonce_generation() {
let nonce_response = generate_nonce();
assert!(nonce_response.nonce.starts_with("nonce_"));
assert!(nonce_response.expires_at > 0);
}
}