This commit is contained in:
2025-08-20 09:56:55 +02:00
parent 4174ff1663
commit 2bf66e83bb
8 changed files with 815 additions and 0 deletions

263
specs/specs.md Normal file
View File

@@ -0,0 +1,263 @@
## Objects Used
| Component | What it **stores** | Where it lives (Redis key) | Main responsibilities |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| **Actor** | Public key, reachable addresses, timestamps | `actor:<id>` (hash) | An identity that can request work, receive results and act as an administrator of a *Context*. |
| **Context**| Permission lists (`admins`, `readers`, `executors`), timestamps | `context:<id>` (hash) | An isolated “tenant” a separate Redis DB and filesystem area. All objects (flows, messages, jobs, runners) belonging to a given workflow are stored under this context. The permission lists control who may read, execute or administer the context. |
| **Flow** | DAG of job IDs, envvars, result map, status, timestamps | `flow:<id>` (hash) | A highlevel workflow created by a single **Actor**. It groups many **RunnerJob** objects, records their execution order, supplies common environment variables and aggregates the final result. |
| **Message**| Payload, type (`job\|chat\|mail`), format (`html\|text\|md`), timeouts, embedded **Job** objects, log stream, status, timestamps | `message:<caller_id>:<id>` (hash) | The transport unit that travels over **Mycelium** (the pub/sub/message bus). A message can contain a **RunnerJob** (or a list of jobs) and is queued in two generic Redis lists: `msg_out` (to be sent) and `msg_in` (already received). |
| **Runner** | Public key, Mycelium address, topic name, type (`v\|python\|osis\|rust`), local flag, timestamps | `runner:<id>` (hash) | The *worker* that actually executes **RunnerJob** scripts. It subscribes to a Mycelium topic (normally `runner<id>`). If `local == true` the runner also consumes jobs directly from a Redis queue that is named after the scripttype suffix (`v`, `python`, …). |
| **RunnerJob**| Script source, type (`osis\|sal\|v\|python`), envvars, prerequisites, dependencies, status, timestamps, result map | `job:<caller_id>:<id>` (hash) | A single executable unit. It lives inside a **Context**, belongs to a **Runner**, and is queued according to its `script_type` (e.g. `queue:python`). Its status moves through the lifecycle `dispatched → waiting_for_prerequisites → started → finished|error`. |
> **Key idea:** All objects are persisted as *hashes* in a **Redis** database that is dedicated to a *Context*. The system is completely **decentralised** each actor owns its own context and can spin up as many runners as needed. Communication between actors, runners and the rest of the system happens over **Mycelium**, a messagebus that uses Redis lists as queues.
---
## Interaction diagram (who talks to who)
### Sequence diagram “Submit a flow and run it”
```mermaid
%%{init: {"theme":"dark"}}%%
sequenceDiagram
participant A as Actor
participant L as LocalContext (Redis)
participant M as Mycelium (msg_out / msg_in)
participant R as RemoteContext (Redis)
participant W as Runner (worker)
%% 1. Actor creates everything locally
A->>L: create Flow + RunnerJob (J)
A->>L: LPUSH msg_out Message{type=job, payload=J, target=Remote}
%% 2. Mycelium transports the message
M->>R: LPUSH msg_in (Message key)
%% 3. Remote context materialises the job
R->>R: HSET Message hash
R->>R: HSET RunnerJob (J') // copy of payload
R->>R: LPUSH queue:v (job key)
%% 4. Runner consumes and executes
W->>R: BRPOP queue:v (job key)
W->>R: HSET job status = started
W->>W: execute script
W->>R: HSET job result + status = finished
%% 5. Result is sent back
W->>M: LPUSH msg_out Message{type=result, payload=result, target=Local}
M->>L: LPUSH msg_in (result Message key)
%% 6. Actor receives the result
A->>L: RPOP msg_in → read result
```
### 2.2Component diagram “Static view of objects & links”
```mermaid
%%{init: {"theme":"dark"}}%%
graph LR
subgraph Redis["Redis (per Context)"]
A[Actor] -->|stores| Ctx[Context]
Ctx -->|stores| Fl[Flow]
Ctx -->|stores| Msg[Message]
Ctx -->|stores| Rnr[Runner]
Ctx -->|stores| Job[RunnerJob]
end
subgraph Mycelium["Mycelium (Pub/Sub)"]
MsgOut["queue:msg_out"] -->|outgoing| Mcel[Mycelium Bus]
Mcel -->|incoming| MsgIn["queue:msg_in"]
RnrTopic["topic:runnerX"] -->|subscribed by| Rnr
queueV["queue:v"] -->|local jobs| Rnr
queuePython["queue:python"] -->|local jobs| Rnr
end
A -->|creates / reads| Fl
A -->|creates / reads| Msg
A -->|creates / reads| Rnr
A -->|creates / reads| Job
Fl -->|references| Job
Msg -->|may embed| Job
Rnr -->|executes| Job
Job -->|updates| Fl
Msg -->|carries result back to| A
```
### 2.3Flowstatus lifecycle (state diagram)
```mermaid
%%{init: {"theme":"dark"}}%%
stateDiagram-v2
[*] --> dispatched
dispatched --> waiting_for_prerequisites : has prereqs
waiting_for_prerequisites --> started : prereqs met
dispatched --> started : no prereqs
started --> finished : success
started --> error : failure
waiting_for_prerequisites --> error : timeout / impossible
error --> [*]
finished --> [*]
```
---
## 3Redis objects concrete key & data layout
All objects are stored as **hashes** (`HSET`). Below is a concise catalog that can be copied into a design doc.
| Key pattern | Example | Fields (type) | Comments |
|-------------|---------|---------------|----------|
| `actor:${id}` | `actor:12` | `id`u32, `pubkey`str, `address`list\<Address\>, `created_at`u32, `updated_at`u32 | One hash per actor. |
| `context:${id}` | `context:7` | `id`u32, `admins`list\<u32\>, `readers`list\<u32\>, `executors`list\<u32\>, `created_at`u32, `updated_at`u32 | Holds permission lists for a tenant. |
| `flow:${id}` | `flow:33` | `id`u32, `caller_id`u32, `context_id`u32, `jobs`list\<u32\>, `env_vars`map\<str,str\>, `result`map\<str,str\>, `created_at`u32, `updated_at`u32, `status`str (`dispatched|started|error|finished`) |
| `message:${caller_id}:${id}` | `message:12:101` | `id`u32, `caller_id`u32, `context_id`u32, `message`str, `message_type`str (`job|chat|mail`), `message_format_type`str (`html|text|md`), `timeout`u32, `timeout_ack`u32, `timeout_result`u32, `job`list\<RunnerJob\> (serialized), `logs`list\<Log\>, `created_at`u32, `updated_at`u32, `status`str (`dispatched|acknowledged|error|processed`) |
| `runner:${id}` | `runner:20` | `id`u32, `pubkey`str, `address`str, `topic`str, `local`bool, `created_at`u32, `updated_at`u32 |
| `job:${caller_id}:${id}` | `job:12:2001` | `id`u32, `caller_id`u32, `context_id`u32, `script`str, `script_type`str (`osis|sal|v|python`), `timeout`u32, `retries`u8, `env_vars`map\<str,str\>, `result`map\<str,str\>, `prerequisites`list\<str\>, `dependends`list\<u32\>, `created_at`u32, `updated_at`u32, `status`str (`dispatched|waiting_for_prerequisites|started|error|finished`) |
#### Queue objects (lists)
| Queue name | Purpose |
|------------|---------|
| `msg_out` | **Outbound** generic queue every `Message` that an actor wants to send is pushed here. |
| `msg_in` | **Inbound** generic queue every message received from Mycelium is placed here for the local consumer to process. |
| `queue:${suffix}` (e.g. `queue:v`, `queue:python`) | Local job queues used by a **Runner** when `local == true`. The suffix comes from `ScriptType.queue_suffix()`. |
---
## 4System specification (as a concise “specs” section)
### 4.1Naming conventions
* All Redis **hashes** are prefixed with the object name (`actor:`, `context:`, …).
* All **queues** are simple Redis lists (`LPUSH` / `RPOP`).
* **Message** keys embed both the *caller* and a locally unique *message id* this guarantees global uniqueness across contexts.
### 4.2Permissions & security
* Only IDs present in `Context.admins` may **create** or **delete** any object inside that context.
* `Context.readers` can **GET** any hash but not modify it.
* `Context.executors` are allowed to **update** `RunnerJob.status`, `result` and to **pop** from local job queues.
* Every `Actor` must present a `pubkey` that can be verified by the receiving side (Mycelium uses asymmetric crypto).
### 4.3Message flow (publish / consume)
Below is a **rewritten “Message flow (publish/consume)”** that reflects the real runtime components:
* **Supervisordaemon** runs on the node that owns the **Flow** (the *actors* side).
It is the only process that ever **RPOP**s from the global `msg_out` queue, adds the proper routing information and hands the message to **Mycelium**.
* **Mycelium** the pure pub/sub/messagebus. It never touches Redis directly; it only receives a *payload key* from the coordinator and delivers that key to the remote tenants `msg_in` list.
* **Remoteside runner / service** consumes from its own `msg_in`, materialises the job and executes it.
The table now uses the exact component names and adds a short note about the permission check that the coordinator performs before it releases a message.
| # | Action (what the system does) | Component that performs it | Redis interaction (exact commands) |
|---|-------------------------------|----------------------------|------------------------------------|
| **1Publish** | Actor creates a `Message` hash and **LPUSH**es its key onto the *outbound* queue. | **Actor** (client code) | `HSET message:12:101 …` <br/> `LPUSH msg_out message:12:101` |
| **2Coordinate & route** | The **Supervisor daemon** (running at source) **RPOP**s the key, checks the actors permissions, adds the *targetcontext* and *topic* fields, then forwards the key to Mycelium. | **Supervisor daemon** (peractor) | `RPOP msg_out` → (inprocess) → `LPUSH msg_out_coordinator <key>` (internal buffer) |
| **3Transport** | Mycelium receives the key, looks at `Message.message_type` (or the explicit `topic`) and pushes the key onto the *inbound* queue of the **remote** tenant. | **Mycelium bus** (network layer) | `LPUSH msg_in:<remotectx> <key>` |
| **4Consume** | The **Remote side** (runner or service) **RPOP**s from its `msg_in`, loads the full hash, verifies the actors signature and decides what to do based on `message_type`. | **Remote consumer** (runner/service | `RPOP msg_in:<remotectx>``HGETALL message:<key>` |
| **5Job materialisation** | If `message_type == "job"` the consumer creates a **RunnerJob** entry inside the **remote** context, adds the job **key** to the proper *scripttype* queue (`queue:v`, `queue:python`, …). | **Remote consumer** | `HSET job:<caller_id>:<job_id> …` <br/> `LPUSH queue:<script_type> job:<caller_id>:<job_id>` |
| **6Runner execution loop** | A **Runner** attached to that remote context **BRPOP**s from its scripttype queue, sets `status = started`, runs the script, writes `result` and final `status`. | **Runner** | `BRPOP queue:<script_type>``HSET job:<…> status started` → … → `HSET job:<…> result … status finished` |
| **7Result notification** | The runner builds a new `Message` (type `chat`, `result`, …) and pushes it onto **msg_out** again. The **Supervisor daemon** on the *originating* side will later pick it up and route it back to the original actor. | **Runner****Supervisor (remote side)****Mycelium****Supervisor (origin side)****Actor** | `HSET message:<res_key> …` <br/> `LPUSH msg_out message:<res_key>` (steps 23 repeat in reverse direction) |
---
## Tiny endtoend sequence (still simple enough to render)
```mermaid
%%{init: {"theme":"dark"}}%%
sequenceDiagram
participant A as Actor
participant L as LocalRedis (Flow ctx)
participant C as Supervisor daemon (local)
participant M as Mycelium bus
participant R as RemoteRedis (target ctx)
participant W as Runner (remote)
%% 1⃣ publish
A->>L: HSET message:12:101 …
A->>L: LPUSH msg_out message:12:101
%% 2⃣ coordinate
C->>L: RPOP msg_out
C->>C: check permissions / add routing info
C->>M: push key to Mycelium (msg_out_coordinator)
%% 3⃣ transport
M->>R: LPUSH msg_in message:12:101
%% 4⃣ consume
R->>W: RPOP msg_in
R->>R: HGETALL message:12:101
R->>R: verify signature
alt message_type == job
R->>R: HSET job:12:2001 …
R->>R: LPUSH queue:v job:12:2001
end
%% 5⃣ runner loop
W->>R: BRPOP queue:v (job:12:2001)
W->>R: HSET job:12:2001 status started
W->>W: execute script
W->>R: HSET job:12:2001 result … status finished
%% 6⃣ result back
W->>R: HSET message:12:900 result …
W->>R: LPUSH msg_out message:12:900
C->>M: (coordinator on remote side) routes back
M->>L: LPUSH msg_in message:12:900
A->>L: RPOP msg_in → read result
```
## 5What the **system** is trying to achieve
| Goal | How it is realized |
|------|--------------------|
| **Decentralised execution** | Every *actor* owns a **Context**; any number of **Runners** can be attached to that context, possibly on different machines, and they all talk over the same Mycelium/Redis backend. |
| **Finegrained permissions** | `Context.admins/readers/executors` enforce who can create, view or run jobs. |
| **Loose coupling via messages** | All actions (job submission, result propagation, chat, mail …) use the generic `Message` object; the same transport pipeline handles all of them. |
| **Workflow orchestration** | The **Flow** object models a DAG of jobs, tracks collective status and aggregates results, without needing a central scheduler. |
| **Pluggable runtimes** | `ScriptType` and `RunnerType` let a runner choose the proper execution environment (V, Python, OSIS, Rust, …) adding a new language only means adding a new `ScriptType` and a corresponding worker. |
| **Observability** | `Log` arrays attached to a `Message` and the timestamps on every hash give a complete audit trail. |
| **Resilience** | Jobs are idempotent hash entries; queues are persisted in Redis, and status changes are atomic (`HSET`). Retries and timeouts guarantee eventual consistency. |
---
## 6Diagram summary (quick visual cheatsheet)
```mermaid
%%{init: {"theme":"dark"}}%%
graph TD
A[Actor] -->|creates| Ctx[Context]
A -->|creates| Flow
A -->|creates| Msg
A -->|creates| Rnr[Runner]
A -->|creates| Job[RunnerJob]
subgraph Redis["Redis (per Context)"]
Ctx --> A
Ctx --> Flow
Ctx --> Msg
Ctx --> Rnr
Ctx --> Job
end
Msg -->|push to| OutQ[msg_out]
OutQ --> Myc[Mycelium Bus]
Myc -->|deliver| InQ[msg_in]
InQ --> Rnr
Rnr -->|pop from| Qv["queue:v"]
Rnr -->|pop from| Qpy["queue:python"]
Rnr -->|updates| Job
Job -->|updates| Flow
Flow -->|result Message| Msg
```