This commit is contained in:
despiegk 2025-08-16 14:22:56 +02:00
parent 30a09e6d53
commit 200d0c928d
48 changed files with 217 additions and 1209 deletions

74
Cargo.lock generated
View File

@ -197,15 +197,6 @@ version = "0.9.1"
source = "registry+https://github.com/rust-lang/crates.io-index" source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "d86b93f97252c47b41663388e6d155714a9d0c398b99f1005cbc5f978b29f445" checksum = "d86b93f97252c47b41663388e6d155714a9d0c398b99f1005cbc5f978b29f445"
[[package]]
name = "bincode"
version = "1.3.3"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "b1f45e9417d87227c7a56d22e471c6206462cba514c7590c09aff4cf6d1ddcad"
dependencies = [
"serde",
]
[[package]] [[package]]
name = "bitflags" name = "bitflags"
version = "2.9.2" version = "2.9.2"
@ -221,12 +212,6 @@ dependencies = [
"generic-array", "generic-array",
] ]
[[package]]
name = "byteorder"
version = "1.5.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "1fd0f2584146f6f2ef48085050886acf353beff7305ebd1ae69500e27c67f64b"
[[package]] [[package]]
name = "bytes" name = "bytes"
version = "1.10.1" version = "1.10.1"
@ -661,28 +646,22 @@ version = "0.5.0"
source = "registry+https://github.com/rust-lang/crates.io-index" source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "2304e00983f87ffb38b55b444b5e3b60a884b5d30c0fca7d82fe33449bbe55ea" checksum = "2304e00983f87ffb38b55b444b5e3b60a884b5d30c0fca7d82fe33449bbe55ea"
[[package]]
name = "herocrypto"
version = "0.1.0"
[[package]] [[package]]
name = "herodb" name = "herodb"
version = "0.0.1" version = "0.1.0"
dependencies = [ dependencies = [
"age",
"anyhow", "anyhow",
"base64 0.22.1",
"bincode",
"byteorder",
"bytes", "bytes",
"chacha20poly1305",
"clap", "clap",
"ed25519-dalek", "libcryptoa",
"futures", "libdbstorage",
"rand", "log",
"redb",
"redis", "redis",
"secrecy",
"serde", "serde",
"serde_json",
"sha2",
"thiserror",
"tokio", "tokio",
] ]
@ -949,6 +928,39 @@ version = "0.2.175"
source = "registry+https://github.com/rust-lang/crates.io-index" source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "6a82ae493e598baaea5209805c49bbf2ea7de956d50d7da0da1164f9c6d28543" checksum = "6a82ae493e598baaea5209805c49bbf2ea7de956d50d7da0da1164f9c6d28543"
[[package]]
name = "libcrypto"
version = "0.1.0"
dependencies = [
"chacha20poly1305",
"libdbstorage",
"rand",
"sha2",
"thiserror",
]
[[package]]
name = "libcryptoa"
version = "0.1.0"
dependencies = [
"age",
"base64 0.22.1",
"ed25519-dalek",
"rand",
"secrecy",
"thiserror",
]
[[package]]
name = "libdbstorage"
version = "0.1.0"
dependencies = [
"redb",
"serde",
"serde_json",
"thiserror",
]
[[package]] [[package]]
name = "litemap" name = "litemap"
version = "0.8.0" version = "0.8.0"
@ -1530,6 +1542,10 @@ checksum = "13c2bddecc57b384dee18652358fb23172facb8a2c51ccc10d74c157bdea3292"
name = "supervisor" name = "supervisor"
version = "0.1.0" version = "0.1.0"
[[package]]
name = "supervisorrpc"
version = "0.1.0"
[[package]] [[package]]
name = "syn" name = "syn"
version = "1.0.109" version = "1.0.109"

View File

@ -1,12 +1,37 @@
[workspace] [workspace]
members = [
"herodb",
"supervisor",
]
resolver = "2" resolver = "2"
members = [
"crates/herodb",
"crates/libdbstorage",
"crates/libcrypto",
"crates/libcryptoa",
"crates/herocrypto",
"crates/supervisorrpc",
"crates/supervisor",
]
[workspace.dependencies]
# Central place for dependencies shared across the workspace
anyhow = "1.0"
tokio = { version = "1", features = ["full"] }
serde = { version = "1.0", features = ["derive"] }
serde_json = "1.0"
thiserror = "1.0"
log = "0.4"
# Crypto deps
chacha20poly1305 = "0.10"
rand = "0.8"
sha2 = "0.10"
age = "0.10"
secrecy = "0.8"
ed25519-dalek = "2"
base64 = "0.22"
# DB
redb = "2.1"
# You can define shared profiles for all workspace members here
[profile.release] [profile.release]
lto = true lto = true
codegen-units = 1 codegen-units =1
strip = true strip = true

View File

@ -0,0 +1,6 @@
[package]
name = "herocrypto"
version = "0.1.0"
edition = "2024"
[dependencies]

View File

@ -0,0 +1,14 @@
pub fn add(left: u64, right: u64) -> u64 {
left + right
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn it_works() {
let result = add(2, 2);
assert_eq!(result, 4);
}
}

28
crates/herodb/Cargo.toml Normal file
View File

@ -0,0 +1,28 @@
[package]
name = "herodb"
version = "0.1.0"
authors = ["Pin Fang <fpfangpin@hotmail.com>"]
edition = "2021"
# THIS IS A BINARY, NOT A LIBRARY
[[bin]]
name = "herodb"
path = "src/main.rs"
[dependencies]
# Workspace dependencies
anyhow = { workspace = true }
tokio = { workspace = true }
serde = { workspace = true }
log = { workspace = true }
# Local Crate Dependencies
libdbstorage = { path = "../libdbstorage" }
libcryptoa = { path = "../libcryptoa" }
# Other dependencies
clap = { version = "4.5", features = ["derive"] }
bytes = "1.3.0" # Example, keep specific versions if needed
[dev-dependencies]
redis = { version = "0.24", features = ["aio", "tokio-comp"] }

View File

@ -0,0 +1 @@
fn main() {}

View File

@ -0,0 +1,16 @@
[package]
name = "libcrypto"
version = "0.1.0"
edition = "2021"
[dependencies]
chacha20poly1305 = "0.10"
rand = { workspace = true }
sha2 = { workspace = true }
thiserror = { workspace = true }
# Add this dependency for the From<CryptoError> for DBError
libdbstorage = { path = "../libdbstorage", optional = true }
[features]
storage_compat = ["dep:libdbstorage"]

View File

@ -0,0 +1,14 @@
pub fn add(left: u64, right: u64) -> u64 {
left + right
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn it_works() {
let result = add(2, 2);
assert_eq!(result, 4);
}
}

View File

@ -0,0 +1,12 @@
[package]
name = "libcryptoa"
version = "0.1.0"
edition = "2021"
[dependencies]
age = { workspace = true }
secrecy = { workspace = true }
ed25519-dalek = { workspace = true }
base64 = { workspace = true }
rand = { workspace = true }
thiserror = { workspace = true }

View File

@ -0,0 +1,14 @@
pub fn add(left: u64, right: u64) -> u64 {
left + right
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn it_works() {
let result = add(2, 2);
assert_eq!(result, 4);
}
}

View File

@ -0,0 +1,12 @@
[package]
name = "libdbstorage"
version = "0.1.0"
edition = "2021"
[dependencies]
redb = { workspace = true }
serde = { workspace = true }
serde_json = { workspace = true }
[dev-dependencies]
thiserror = { workspace = true }

View File

@ -0,0 +1,14 @@
pub fn add(left: u64, right: u64) -> u64 {
left + right
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn it_works() {
let result = add(2, 2);
assert_eq!(result, 4);
}
}

View File

@ -0,0 +1,6 @@
[package]
name = "supervisorrpc"
version = "0.1.0"
edition = "2024"
[dependencies]

View File

@ -0,0 +1,3 @@
fn main() {
println!("Hello, world!");
}

View File

@ -1,28 +0,0 @@
[package]
name = "herodb"
version = "0.0.1"
authors = ["Pin Fang <fpfangpin@hotmail.com>"]
edition = "2021"
[dependencies]
anyhow = "1.0.59"
bytes = "1.3.0"
thiserror = "1.0.32"
tokio = { version = "1.23.0", features = ["full"] }
clap = { version = "4.5.20", features = ["derive"] }
byteorder = "1.4.3"
futures = "0.3"
redb = "2.1.3"
serde = { version = "1.0", features = ["derive"] }
serde_json = "1.0"
bincode = "1.3.3"
chacha20poly1305 = "0.10.1"
rand = "0.8"
sha2 = "0.10"
age = "0.10"
secrecy = "0.8"
ed25519-dalek = "2"
base64 = "0.22"
[dev-dependencies]
redis = { version = "0.24", features = ["aio", "tokio-comp"] }

View File

@ -1,99 +0,0 @@
### Cargo.toml
```toml
[dependencies]
chacha20poly1305 = { version = "0.10", features = ["xchacha20"] }
rand = "0.8"
sha2 = "0.10"
```
### `crypto_factory.rs`
```rust
use chacha20poly1305::{
aead::{Aead, KeyInit, OsRng},
XChaCha20Poly1305, Key, XNonce,
};
use rand::RngCore;
use sha2::{Digest, Sha256};
const VERSION: u8 = 1;
const NONCE_LEN: usize = 24;
const TAG_LEN: usize = 16;
#[derive(Debug)]
pub enum CryptoError {
Format, // wrong length / header
Version(u8), // unknown version
Decrypt, // wrong key or corrupted data
}
/// Super-simple factory: new(secret) + encrypt(bytes) + decrypt(bytes)
pub struct CryptoFactory {
key: Key<XChaCha20Poly1305>,
}
impl CryptoFactory {
/// Accepts any secret bytes; turns them into a 32-byte key (SHA-256).
/// (If your secret is already 32 bytes, this is still fine.)
pub fn new<S: AsRef<[u8]>>(secret: S) -> Self {
let mut h = Sha256::new();
h.update(b"xchacha20poly1305-factory:v1"); // domain separation
h.update(secret.as_ref());
let digest = h.finalize(); // 32 bytes
let key = Key::<XChaCha20Poly1305>::from_slice(&digest).to_owned();
Self { key }
}
/// Output layout: [version:1][nonce:24][ciphertext||tag]
pub fn encrypt(&self, plaintext: &[u8]) -> Vec<u8> {
let cipher = XChaCha20Poly1305::new(&self.key);
let mut nonce_bytes = [0u8; NONCE_LEN];
OsRng.fill_bytes(&mut nonce_bytes);
let nonce = XNonce::from_slice(&nonce_bytes);
let mut out = Vec::with_capacity(1 + NONCE_LEN + plaintext.len() + TAG_LEN);
out.push(VERSION);
out.extend_from_slice(&nonce_bytes);
let ct = cipher.encrypt(nonce, plaintext).expect("encrypt");
out.extend_from_slice(&ct);
out
}
pub fn decrypt(&self, blob: &[u8]) -> Result<Vec<u8>, CryptoError> {
if blob.len() < 1 + NONCE_LEN + TAG_LEN {
return Err(CryptoError::Format);
}
let ver = blob[0];
if ver != VERSION {
return Err(CryptoError::Version(ver));
}
let nonce = XNonce::from_slice(&blob[1..1 + NONCE_LEN]);
let ct = &blob[1 + NONCE_LEN..];
let cipher = XChaCha20Poly1305::new(&self.key);
cipher.decrypt(nonce, ct).map_err(|_| CryptoError::Decrypt)
}
}
```
### Tiny usage example
```rust
fn main() {
let f = CryptoFactory::new(b"super-secret-key-material");
let val = b"\x00\xFFbinary\x01\x02\x03";
let blob = f.encrypt(val);
let roundtrip = f.decrypt(&blob).unwrap();
assert_eq!(roundtrip, val);
}
```
Thats it: `new(secret)`, `encrypt(bytes)`, `decrypt(bytes)`.
You can stash the returned `blob` directly in your storage layer behind Redis.

View File

@ -1,80 +0,0 @@
========================
CODE SNIPPETS
========================
TITLE: 1PC+C Commit Strategy Vulnerability Example
DESCRIPTION: Illustrates a scenario where a partially committed transaction might appear complete due to the non-cryptographic checksum (XXH3) used in the 1PC+C commit strategy. This requires controlling page flush order, introducing a crash during fsync, and ensuring valid checksums for partially written data.
SOURCE: https://github.com/cberner/redb/blob/master/docs/design.md#_snippet_9
LANGUAGE: rust
CODE:
```
table.insert(malicious_key, malicious_value);
table.insert(good_key, good_value);
txn.commit();
```
LANGUAGE: rust
CODE:
```
table.insert(malicious_key, malicious_value);
txn.commit();
```
----------------------------------------
TITLE: Basic Key-Value Operations in redb
DESCRIPTION: Demonstrates the fundamental usage of redb for creating a database, opening a table, inserting a key-value pair, and retrieving the value within separate read and write transactions.
SOURCE: https://github.com/cberner/redb/blob/master/README.md#_snippet_0
LANGUAGE: rust
CODE:
```
use redb::{Database, Error, ReadableTable, TableDefinition};
const TABLE: TableDefinition<&str, u64> = TableDefinition::new("my_data");
fn main() -> Result<(), Error> {
let db = Database::create("my_db.redb")?;
let write_txn = db.begin_write()?;
{
let mut table = write_txn.open_table(TABLE)?;
table.insert("my_key", &123)?;
}
write_txn.commit()?;
let read_txn = db.begin_read()?;
let table = read_txn.open_table(TABLE)?;
assert_eq!(table.get("my_key")?.unwrap().value(), 123);
Ok(())
}
```
## What *redb* currently supports:
* Simple operations like creating databases, inserting key-value pairs, opening and reading tables ([GitHub][1]).
* No mention of operations such as:
* Iterating over keys with a given prefix.
* Range queries based on string prefixes.
* Specialized prefixfiltered lookups.
## implement range scans as follows
You can implement prefix-like functionality using **range scans** combined with manual checks, similar to using a `BTreeSet` in Rust:
```rust
for key in table.range(prefix..).keys() {
if !key.starts_with(prefix) {
break;
}
// process key
}
```
This pattern iterates keys starting at the prefix, and stops once a key no longer matches the prefix—this works because the keys are sorted ([GitHub][1]).

View File

@ -1,150 +0,0 @@
]
# INFO
**What it does**
Returns server stats in a human-readable text block, optionally filtered by sections. Typical sections: `server`, `clients`, `memory`, `persistence`, `stats`, `replication`, `cpu`, `commandstats`, `latencystats`, `cluster`, `modules`, `keyspace`, `errorstats`. Special args: `all`, `default`, `everything`. The reply is a **Bulk String** with `# <Section>` headers and `key:value` lines. ([Redis][1])
**Syntax**
```
INFO [section [section ...]]
```
**Return (RESP2/RESP3)**: Bulk String. ([Redis][1])
**RESP request/response**
```
# Request: whole default set
*1\r\n$4\r\nINFO\r\n
# Request: a specific section, e.g., clients
*2\r\n$4\r\nINFO\r\n$7\r\nclients\r\n
# Response (prefix shown; body is long)
$1234\r\n# Server\r\nredis_version:7.4.0\r\n...\r\n# Clients\r\nconnected_clients:3\r\n...\r\n
```
(Reply type/format per RESP spec and the INFO page.) ([Redis][2])
---
# Connection “name” (there is **no** top-level `NAME` command)
Redis doesnt have a standalone `NAME` command. Connection names are handled via `CLIENT SETNAME` and retrieved via `CLIENT GETNAME`. ([Redis][3])
## CLIENT SETNAME
Assigns a human label to the current connection (shown in `CLIENT LIST`, logs, etc.). No spaces allowed in the name; empty string clears it. Length is limited by Redis string limits (practically huge). **Reply**: Simple String `OK`. ([Redis][4])
**Syntax**
```
CLIENT SETNAME connection-name
```
**RESP**
```
# Set the name "myapp"
*3\r\n$6\r\nCLIENT\r\n$7\r\nSETNAME\r\n$5\r\nmyapp\r\n
# Reply
+OK\r\n
```
## CLIENT GETNAME
Returns the current connections name or **Null Bulk String** if unset. ([Redis][5])
**Syntax**
```
CLIENT GETNAME
```
**RESP**
```
# Before SETNAME:
*2\r\n$6\r\nCLIENT\r\n$7\r\nGETNAME\r\n
$-1\r\n # nil (no name)
# After SETNAME myapp:
*2\r\n$6\r\nCLIENT\r\n$7\r\nGETNAME\r\n
$5\r\nmyapp\r\n
```
(Null/Bulk String encoding per RESP spec.) ([Redis][2])
---
# CLIENT (container command + key subcommands)
`CLIENT` is a **container**; use subcommands like `CLIENT LIST`, `CLIENT INFO`, `CLIENT ID`, `CLIENT KILL`, `CLIENT TRACKING`, etc. Call `CLIENT HELP` to enumerate them. ([Redis][3])
## CLIENT LIST
Shows all connections as a single **Bulk String**: one line per client with `field=value` pairs (includes `id`, `addr`, `name`, `db`, `user`, `resp`, and more). Filters: `TYPE` and `ID`. **Return**: Bulk String (RESP2/RESP3). ([Redis][6])
**Syntax**
```
CLIENT LIST [TYPE <NORMAL|MASTER|REPLICA|PUBSUB>] [ID client-id ...]
```
**RESP**
```
*2\r\n$6\r\nCLIENT\r\n$4\r\nLIST\r\n
# Reply (single Bulk String; example with one line shown)
$188\r\nid=7 addr=127.0.0.1:60840 laddr=127.0.0.1:6379 fd=8 name=myapp age=12 idle=3 flags=N db=0 ...\r\n
```
## CLIENT INFO
Returns info for **this** connection only (same format/fields as a single line of `CLIENT LIST`). **Return**: Bulk String. Available since 6.2.0. ([Redis][7])
**Syntax**
```
CLIENT INFO
```
**RESP**
```
*2\r\n$6\r\nCLIENT\r\n$4\r\nINFO\r\n
$160\r\nid=7 addr=127.0.0.1:60840 laddr=127.0.0.1:6379 fd=8 name=myapp db=0 user=default resp=2 ...\r\n
```
---
# RESP notes youll need for your parser
* **Requests** are Arrays: `*N\r\n` followed by `N` Bulk Strings for verb/args.
* **Common replies here**: Simple String (`+OK\r\n`), Bulk String (`$<len>\r\n...\r\n`), and **Null Bulk String** (`$-1\r\n`). (These cover `INFO`, `CLIENT LIST/INFO`, `CLIENT GETNAME`, `CLIENT SETNAME`.) ([Redis][2])
---
## Sources (checked)
* INFO command (syntax, sections, behavior). ([Redis][1])
* RESP spec (request/response framing, Bulk/Null Bulk Strings). ([Redis][2])
* CLIENT container + subcommands index. ([Redis][3])
* CLIENT LIST (fields, bulk-string return, filters). ([Redis][6])
* CLIENT INFO (exists since 6.2, reply format). ([Redis][7])
* CLIENT SETNAME (no spaces; clears with empty string; huge length OK). ([Redis][4])
* CLIENT GETNAME (nil if unset). ([Redis][5])
If you want, I can fold this into a tiny Rust “command + RESP” test harness that exercises `INFO`, `CLIENT SETNAME/GETNAME`, `CLIENT LIST`, and `CLIENT INFO` against your in-mem RESP parser.
[1]: https://redis.io/docs/latest/commands/info/ "INFO | Docs"
[2]: https://redis.io/docs/latest/develop/reference/protocol-spec/?utm_source=chatgpt.com "Redis serialization protocol specification | Docs"
[3]: https://redis.io/docs/latest/commands/client/ "CLIENT | Docs"
[4]: https://redis.io/docs/latest/commands/client-setname/?utm_source=chatgpt.com "CLIENT SETNAME | Docs"
[5]: https://redis.io/docs/latest/commands/client-getname/?utm_source=chatgpt.com "CLIENT GETNAME | Docs"
[6]: https://redis.io/docs/latest/commands/client-list/ "CLIENT LIST | Docs"
[7]: https://redis.io/docs/latest/commands/client-info/?utm_source=chatgpt.com "CLIENT INFO | Docs"

View File

@ -1,251 +0,0 @@
Got it 👍 — lets break this down properly.
Redis has two broad classes youre asking about:
1. **Basic key-space functions** (SET, GET, DEL, EXISTS, etc.)
2. **Iteration commands** (`SCAN`, `SSCAN`, `HSCAN`, `ZSCAN`)
And for each Ill show:
* What it does
* How it works at a high level
* Its **RESP protocol implementation** (the actual wire format).
---
# 1. Basic Key-Space Commands
### `SET key value`
* Stores a string value at a key.
* Overwrites if the key already exists.
**Protocol (RESP2):**
```
*3
$3
SET
$3
foo
$3
bar
```
(client sends: array of 3 bulk strings: `["SET", "foo", "bar"]`)
**Reply:**
```
+OK
```
---
### `GET key`
* Retrieves the string value stored at the key.
* Returns `nil` if key doesnt exist.
**Protocol:**
```
*2
$3
GET
$3
foo
```
**Reply:**
```
$3
bar
```
(or `$-1` for nil)
---
### `DEL key [key ...]`
* Removes one or more keys.
* Returns number of keys actually removed.
**Protocol:**
```
*2
$3
DEL
$3
foo
```
**Reply:**
```
:1
```
(integer reply = number of deleted keys)
---
### `EXISTS key [key ...]`
* Checks if one or more keys exist.
* Returns count of existing keys.
**Protocol:**
```
*2
$6
EXISTS
$3
foo
```
**Reply:**
```
:1
```
---
### `KEYS pattern`
* Returns all keys matching a glob-style pattern.
⚠️ Not efficient in production (O(N)), better to use `SCAN`.
**Protocol:**
```
*2
$4
KEYS
$1
*
```
**Reply:**
```
*2
$3
foo
$3
bar
```
(array of bulk strings with key names)
---
# 2. Iteration Commands (`SCAN` family)
### `SCAN cursor [MATCH pattern] [COUNT n]`
* Iterates the keyspace incrementally.
* Client keeps sending back the cursor from previous call until it returns `0`.
**Protocol example:**
```
*2
$4
SCAN
$1
0
```
**Reply:**
```
*2
$1
0
*2
$3
foo
$3
bar
```
Explanation:
* First element = new cursor (`"0"` means iteration finished).
* Second element = array of keys returned in this batch.
---
### `HSCAN key cursor [MATCH pattern] [COUNT n]`
* Like `SCAN`, but iterates fields of a hash.
**Protocol:**
```
*3
$5
HSCAN
$3
myh
$1
0
```
**Reply:**
```
*2
$1
0
*4
$5
field
$5
value
$5
age
$2
42
```
(Array of alternating field/value pairs)
---
### `SSCAN key cursor [MATCH pattern] [COUNT n]`
* Iterates members of a set.
Protocol and reply structure same as SCAN.
---
### `ZSCAN key cursor [MATCH pattern] [COUNT n]`
* Iterates members of a sorted set with scores.
* Returns alternating `member`, `score`.
---
# Quick Comparison
| Command | Purpose | Return Type |
| -------- | ----------------------------- | --------------------- |
| `SET` | Store a string value | Simple string `+OK` |
| `GET` | Retrieve a string value | Bulk string / nil |
| `DEL` | Delete keys | Integer (count) |
| `EXISTS` | Check existence | Integer (count) |
| `KEYS` | List all matching keys (slow) | Array of bulk strings |
| `SCAN` | Iterate over keys (safe) | `[cursor, array]` |
| `HSCAN` | Iterate over hash fields | `[cursor, array]` |
| `SSCAN` | Iterate over set members | `[cursor, array]` |
| `ZSCAN` | Iterate over sorted set | `[cursor, array]` |
##

View File

@ -1,307 +0,0 @@
# 🔑 Redis `HSET` and Related Hash Commands
## 1. `HSET`
* **Purpose**: Set the value of one or more fields in a hash.
* **Syntax**:
```bash
HSET key field value [field value ...]
```
* **Return**:
* Integer: number of fields that were newly added.
* **RESP Protocol**:
```
*4
$4
HSET
$3
key
$5
field
$5
value
```
(If multiple field-value pairs: `*6`, `*8`, etc.)
---
## 2. `HSETNX`
* **Purpose**: Set the value of a hash field only if it does **not** exist.
* **Syntax**:
```bash
HSETNX key field value
```
* **Return**:
* `1` if field was set.
* `0` if field already exists.
* **RESP Protocol**:
```
*4
$6
HSETNX
$3
key
$5
field
$5
value
```
---
## 3. `HGET`
* **Purpose**: Get the value of a hash field.
* **Syntax**:
```bash
HGET key field
```
* **Return**:
* Bulk string (value) or `nil` if field does not exist.
* **RESP Protocol**:
```
*3
$4
HGET
$3
key
$5
field
```
---
## 4. `HGETALL`
* **Purpose**: Get all fields and values in a hash.
* **Syntax**:
```bash
HGETALL key
```
* **Return**:
* Array of `[field1, value1, field2, value2, ...]`.
* **RESP Protocol**:
```
*2
$7
HGETALL
$3
key
```
---
## 5. `HMSET` (⚠️ Deprecated, use `HSET`)
* **Purpose**: Set multiple field-value pairs.
* **Syntax**:
```bash
HMSET key field value [field value ...]
```
* **Return**:
* Always `OK`.
* **RESP Protocol**:
```
*6
$5
HMSET
$3
key
$5
field
$5
value
$5
field2
$5
value2
```
---
## 6. `HMGET`
* **Purpose**: Get values of multiple fields.
* **Syntax**:
```bash
HMGET key field [field ...]
```
* **Return**:
* Array of values (bulk strings or nils).
* **RESP Protocol**:
```
*4
$5
HMGET
$3
key
$5
field1
$5
field2
```
---
## 7. `HDEL`
* **Purpose**: Delete one or more fields from a hash.
* **Syntax**:
```bash
HDEL key field [field ...]
```
* **Return**:
* Integer: number of fields removed.
* **RESP Protocol**:
```
*3
$4
HDEL
$3
key
$5
field
```
---
## 8. `HEXISTS`
* **Purpose**: Check if a field exists.
* **Syntax**:
```bash
HEXISTS key field
```
* **Return**:
* `1` if exists, `0` if not.
* **RESP Protocol**:
```
*3
$7
HEXISTS
$3
key
$5
field
```
---
## 9. `HKEYS`
* **Purpose**: Get all field names in a hash.
* **Syntax**:
```bash
HKEYS key
```
* **Return**:
* Array of field names.
* **RESP Protocol**:
```
*2
$5
HKEYS
$3
key
```
---
## 10. `HVALS`
* **Purpose**: Get all values in a hash.
* **Syntax**:
```bash
HVALS key
```
* **Return**:
* Array of values.
* **RESP Protocol**:
```
*2
$5
HVALS
$3
key
```
---
## 11. `HLEN`
* **Purpose**: Get number of fields in a hash.
* **Syntax**:
```bash
HLEN key
```
* **Return**:
* Integer: number of fields.
* **RESP Protocol**:
```
*2
$4
HLEN
$3
key
```
## 12. `HSCAN`
* **Purpose**: Iterate fields/values of a hash (cursor-based scan).
* **Syntax**:
```bash
HSCAN key cursor [MATCH pattern] [COUNT count]
```
* **Return**:
* Array: `[new-cursor, [field1, value1, ...]]`
* **RESP Protocol**:
```
*3
$5
HSCAN
$3
key
$1
0
```

View File

@ -1,259 +0,0 @@
# 1) Data model & basics
* A **queue** is a List at key `queue:<name>`.
* Common patterns:
* **Producer**: `LPUSH queue item` (or `RPUSH`)
* **Consumer (non-blocking)**: `RPOP queue` (or `LPOP`)
* **Consumer (blocking)**: `BRPOP queue timeout` (or `BLPOP`)
* If a key doesnt exist, its treated as an **empty list**; push **creates** the list; when the **last element is popped, the key is deleted**. ([Redis][1])
---
# 2) Commands to implement (queues via Lists)
## LPUSH / RPUSH
Prepend/append one or more elements. Create the list if it doesnt exist.
**Return**: Integer = new length of the list.
**Syntax**
```
LPUSH key element [element ...]
RPUSH key element [element ...]
```
**RESP (example)**
```
*3\r\n$5\r\nLPUSH\r\n$5\r\nqueue\r\n$5\r\njob-1\r\n
:1\r\n
```
Refs: semantics & multi-arg ordering. ([Redis][1])
### LPUSHX / RPUSHX (optional but useful)
Like LPUSH/RPUSH, **but only if the list exists**.
**Return**: Integer = new length (0 if key didnt exist).
```
LPUSHX key element [element ...]
RPUSHX key element [element ...]
```
Refs: command index. ([Redis][2])
---
## LPOP / RPOP
Remove & return one (default) or **up to COUNT** elements since Redis 6.2.
If the list is empty or missing, **Null** is returned (Null Bulk or Null Array if COUNT>1).
**Return**:
* No COUNT: Bulk String or Null Bulk.
* With COUNT: Array of Bulk Strings (possibly empty) or Null Array if key missing.
**Syntax**
```
LPOP key [count]
RPOP key [count]
```
**RESP (no COUNT)**
```
*2\r\n$4\r\nRPOP\r\n$5\r\nqueue\r\n
$5\r\njob-1\r\n # or $-1\r\n if empty
```
**RESP (COUNT=2)**
```
*3\r\n$4\r\nLPOP\r\n$5\r\nqueue\r\n$1\r\n2\r\n
*2\r\n$5\r\njob-2\r\n$5\r\njob-3\r\n # or *-1\r\n if key missing
```
Refs: LPOP w/ COUNT; general pop semantics. ([Redis][3])
---
## BLPOP / BRPOP (blocking consumers)
Block until an element is available in any of the given lists or until `timeout` (seconds, **double**, `0` = forever).
**Return** on success: **Array \[key, element]**.
**Return** on timeout: **Null Array**.
**Syntax**
```
BLPOP key [key ...] timeout
BRPOP key [key ...] timeout
```
**RESP**
```
*3\r\n$5\r\nBRPOP\r\n$5\r\nqueue\r\n$1\r\n0\r\n # block forever
# Success reply
*2\r\n$5\r\nqueue\r\n$5\r\njob-4\r\n
# Timeout reply
*-1\r\n
```
**Implementation notes**
* If any listed key is non-empty at call time, reply **immediately** from the first non-empty key **by the commands key order**.
* Otherwise, put the client into a **blocked state** (register per-key waiters). On any `LPUSH/RPUSH` to those keys, **wake the earliest waiter** and serve it atomically.
* If timeout expires, return **Null Array** and clear the blocked state.
Refs: timeout semantics and return shape. ([Redis][4])
---
## LMOVE / BLMOVE (atomic move; replaces RPOPLPUSH/BRPOPLPUSH)
Atomically **pop from one side** of `source` and **push to one side** of `destination`.
* Use for **reliable queues** (move to a *processing* list).
* `BLMOVE` blocks like `BLPOP` when `source` is empty.
**Syntax**
```
LMOVE source destination LEFT|RIGHT LEFT|RIGHT
BLMOVE source destination LEFT|RIGHT LEFT|RIGHT timeout
```
**Return**: Bulk String element moved, or Null if `source` empty (LMOVE); `BLMOVE` blocks/Null on timeout.
**RESP (LMOVE RIGHT->LEFT)**
```
*5\r\n$5\r\nLMOVE\r\n$6\r\nsource\r\n$3\r\ndst\r\n$5\r\nRIGHT\r\n$4\r\nLEFT\r\n
$5\r\njob-5\r\n
```
**Notes**
* Prefer `LMOVE/BLMOVE` over deprecated `RPOPLPUSH/BRPOPLPUSH`.
* Pattern: consumer `LMOVE queue processing RIGHT LEFT` → work → `LREM processing 1 <elem>` to ACK; a reaper can requeue stale items.
Refs: LMOVE/BLMOVE behavior and reliable-queue pattern; deprecation of RPOPLPUSH. ([Redis][5])
*(Compat: you can still implement `RPOPLPUSH source dest` and `BRPOPLPUSH source dest timeout`, but mark them deprecated and map to LMOVE/BLMOVE.)* ([Redis][6])
---
## LLEN (length)
Useful for metrics/backpressure.
```
LLEN key
```
**RESP**
```
*2\r\n$4\r\nLLEN\r\n$5\r\nqueue\r\n
:3\r\n
```
Refs: list overview mentioning LLEN. ([Redis][7])
---
## LREM (ack for “reliable” processing)
Remove occurrences of `element` from the list (head→tail scan).
Use `count=1` to ACK a single processed item from `processing`.
```
LREM key count element
```
**RESP**
```
*4\r\n$4\r\nLREM\r\n$9\r\nprocessing\r\n$1\r\n1\r\n$5\r\njob-5\r\n
:1\r\n
```
Refs: reliable pattern mentions LREM to ACK. ([Redis][5])
---
## LTRIM (bounded queues / retention)
Keep only `[start, stop]` range; everything else is dropped.
Use to cap queue length after pushes.
```
LTRIM key start stop
```
**RESP**
```
*4\r\n$5\r\nLTRIM\r\n$5\r\nqueue\r\n$2\r\n0\r\n$3\r\n999\r\n
+OK\r\n
```
Refs: list overview includes LTRIM for retention. ([Redis][7])
---
## LRANGE / LINDEX (debugging / peeking)
* `LRANGE key start stop` → Array of elements (non-destructive).
* `LINDEX key index` → one element or Null.
These arent required for queue semantics, but handy. ([Redis][7])
---
# 3) Errors & types
* Wrong type: `-WRONGTYPE Operation against a key holding the wrong kind of value\r\n`
* Non-existing key:
* Push: creates the list (returns new length).
* Pop (non-blocking): returns **Null**.
* Blocking pop: **Null Array** on timeout. ([Redis][1])
---
# 4) Blocking engine (implementation sketch)
1. **Call time**: scan keys in user order. If a non-empty list is found, pop & reply immediately.
2. **Otherwise**: register the client as **blocked** on those keys with `deadline = now + timeout` (or infinite).
3. **On push to any key**: if waiters exist, **wake one** (FIFO) and serve its pop **atomically** with the push result.
4. **On timer**: for each blocked client whose deadline passed, reply `Null Array` and clear state.
5. **Connection close**: remove from any wait queues.
Refs for timeout/block semantics. ([Redis][4])
---
# 5) Reliable queue pattern (recommended)
* **Consume**: `LMOVE queue processing RIGHT LEFT` (or `BLMOVE ... 0`).
* **Process** the job.
* **ACK**: `LREM processing 1 <job>` when done.
* **Reaper**: auxiliary task that detects stale jobs (e.g., track job IDs + timestamps in a ZSET) and requeues them. (Lists dont include timestamps; pairing with a ZSET is standard practice.)
Refs: LMOVE docs pattern. ([Redis][5])
---
# 6) Minimal test matrix
* Push/pop happy path (both ends), with/without COUNT.
* Blocking pop: immediate availability, block + timeout, wake on push, multiple keys order, FIFO across multiple waiters.
* LMOVE/BLMOVE: RIGHT→LEFT pipeline, block + wake, cross-list atomicity, ACK via LREM.
* Type errors and key deletion on last pop.

1
src/main.rs Normal file
View File

@ -0,0 +1 @@
fn main() {}