Compare commits
5 Commits
56699b9abb
...
b68325016d
Author | SHA1 | Date | |
---|---|---|---|
b68325016d | |||
2743cd9c81 | |||
eb07386cf4 | |||
fc7672c78a | |||
46f96fa8cf |
847
Cargo.lock
generated
847
Cargo.lock
generated
File diff suppressed because it is too large
Load Diff
171
examples/README.md
Normal file
171
examples/README.md
Normal file
@@ -0,0 +1,171 @@
|
||||
# HeroDB Tantivy Search Examples
|
||||
|
||||
This directory contains examples demonstrating HeroDB's full-text search capabilities powered by Tantivy.
|
||||
|
||||
## Tantivy Search Demo (Bash Script)
|
||||
|
||||
### Overview
|
||||
The `tantivy_search_demo.sh` script provides a comprehensive demonstration of HeroDB's search functionality using Redis commands. It showcases various search scenarios including basic text search, filtering, sorting, geographic queries, and more.
|
||||
|
||||
### Prerequisites
|
||||
1. **HeroDB Server**: The server must be running on port 6381
|
||||
2. **Redis CLI**: The `redis-cli` tool must be installed and available in your PATH
|
||||
|
||||
### Running the Demo
|
||||
|
||||
#### Step 1: Start HeroDB Server
|
||||
```bash
|
||||
# From the project root directory
|
||||
cargo run -- --port 6381
|
||||
```
|
||||
|
||||
#### Step 2: Run the Demo (in a new terminal)
|
||||
```bash
|
||||
# From the project root directory
|
||||
./examples/tantivy_search_demo.sh
|
||||
```
|
||||
|
||||
### What the Demo Covers
|
||||
|
||||
The script demonstrates 15 different search scenarios:
|
||||
|
||||
1. **Index Creation** - Creating a search index with various field types
|
||||
2. **Data Insertion** - Adding sample products to the index
|
||||
3. **Basic Text Search** - Simple keyword searches
|
||||
4. **Filtered Search** - Combining text search with category filters
|
||||
5. **Numeric Range Search** - Finding products within price ranges
|
||||
6. **Sorting Results** - Ordering results by different fields
|
||||
7. **Limited Results** - Pagination and result limiting
|
||||
8. **Complex Queries** - Multi-field searches with sorting
|
||||
9. **Geographic Search** - Location-based queries
|
||||
10. **Index Information** - Getting statistics about the search index
|
||||
11. **Search Comparison** - Tantivy vs simple pattern matching
|
||||
12. **Fuzzy Search** - Typo tolerance and approximate matching
|
||||
13. **Phrase Search** - Exact phrase matching
|
||||
14. **Boolean Queries** - AND, OR, NOT operators
|
||||
15. **Cleanup** - Removing test data
|
||||
|
||||
### Sample Data
|
||||
|
||||
The demo uses a product catalog with the following fields:
|
||||
- **title** (TEXT) - Product name with higher search weight
|
||||
- **description** (TEXT) - Detailed product description
|
||||
- **category** (TAG) - Comma-separated categories
|
||||
- **price** (NUMERIC) - Product price for range queries
|
||||
- **rating** (NUMERIC) - Customer rating for sorting
|
||||
- **location** (GEO) - Geographic coordinates for location searches
|
||||
|
||||
### Key Redis Commands Demonstrated
|
||||
|
||||
#### Index Management
|
||||
```bash
|
||||
# Create search index
|
||||
FT.CREATE product_catalog ON HASH PREFIX 1 product: SCHEMA title TEXT WEIGHT 2.0 SORTABLE description TEXT category TAG SEPARATOR , price NUMERIC SORTABLE rating NUMERIC SORTABLE location GEO
|
||||
|
||||
# Get index information
|
||||
FT.INFO product_catalog
|
||||
|
||||
# Drop index
|
||||
FT.DROPINDEX product_catalog
|
||||
```
|
||||
|
||||
#### Search Queries
|
||||
```bash
|
||||
# Basic text search
|
||||
FT.SEARCH product_catalog wireless
|
||||
|
||||
# Filtered search
|
||||
FT.SEARCH product_catalog 'organic @category:{food}'
|
||||
|
||||
# Numeric range
|
||||
FT.SEARCH product_catalog '@price:[50 150]'
|
||||
|
||||
# Sorted results
|
||||
FT.SEARCH product_catalog '@category:{electronics}' SORTBY price ASC
|
||||
|
||||
# Geographic search
|
||||
FT.SEARCH product_catalog '@location:[37.7749 -122.4194 50 km]'
|
||||
|
||||
# Boolean queries
|
||||
FT.SEARCH product_catalog 'wireless AND audio'
|
||||
FT.SEARCH product_catalog 'coffee OR tea'
|
||||
|
||||
# Phrase search
|
||||
FT.SEARCH product_catalog '"noise canceling"'
|
||||
```
|
||||
|
||||
### Interactive Features
|
||||
|
||||
The demo script includes:
|
||||
- **Colored output** for better readability
|
||||
- **Pause between steps** to review results
|
||||
- **Error handling** with clear error messages
|
||||
- **Automatic cleanup** of test data
|
||||
- **Progress indicators** showing what each step demonstrates
|
||||
|
||||
### Troubleshooting
|
||||
|
||||
#### HeroDB Not Running
|
||||
```
|
||||
✗ HeroDB is not running on port 6381
|
||||
ℹ Please start HeroDB with: cargo run -- --port 6381
|
||||
```
|
||||
**Solution**: Start the HeroDB server in a separate terminal.
|
||||
|
||||
#### Redis CLI Not Found
|
||||
```
|
||||
redis-cli: command not found
|
||||
```
|
||||
**Solution**: Install Redis tools or use an alternative Redis client.
|
||||
|
||||
#### Connection Refused
|
||||
```
|
||||
Could not connect to Redis at localhost:6381: Connection refused
|
||||
```
|
||||
**Solution**: Ensure HeroDB is running and listening on the correct port.
|
||||
|
||||
### Manual Testing
|
||||
|
||||
You can also run individual commands manually:
|
||||
|
||||
```bash
|
||||
# Connect to HeroDB
|
||||
redis-cli -h localhost -p 6381
|
||||
|
||||
# Create a simple index
|
||||
FT.CREATE myindex ON HASH SCHEMA title TEXT description TEXT
|
||||
|
||||
# Add a document
|
||||
HSET doc:1 title "Hello World" description "This is a test document"
|
||||
|
||||
# Search
|
||||
FT.SEARCH myindex hello
|
||||
```
|
||||
|
||||
### Performance Notes
|
||||
|
||||
- **Indexing**: Documents are indexed in real-time as they're added
|
||||
- **Search Speed**: Full-text search is much faster than pattern matching on large datasets
|
||||
- **Memory Usage**: Tantivy indexes are memory-efficient and disk-backed
|
||||
- **Scalability**: Supports millions of documents with sub-second search times
|
||||
|
||||
### Advanced Features
|
||||
|
||||
The demo showcases advanced Tantivy features:
|
||||
- **Relevance Scoring** - Results ranked by relevance
|
||||
- **Fuzzy Matching** - Handles typos and approximate matches
|
||||
- **Field Weighting** - Title field has higher search weight
|
||||
- **Multi-field Search** - Search across multiple fields simultaneously
|
||||
- **Geographic Queries** - Distance-based location searches
|
||||
- **Numeric Ranges** - Efficient range queries on numeric fields
|
||||
- **Tag Filtering** - Fast categorical filtering
|
||||
|
||||
### Next Steps
|
||||
|
||||
After running the demo, explore:
|
||||
1. **Custom Schemas** - Define your own field types and configurations
|
||||
2. **Large Datasets** - Test with thousands or millions of documents
|
||||
3. **Real Applications** - Integrate search into your applications
|
||||
4. **Performance Tuning** - Optimize for your specific use case
|
||||
|
||||
For more information, see the [search documentation](../herodb/docs/search.md).
|
186
examples/simple_demo.sh
Normal file
186
examples/simple_demo.sh
Normal file
@@ -0,0 +1,186 @@
|
||||
#!/bin/bash
|
||||
|
||||
# Simple HeroDB Demo - Basic Redis Commands
|
||||
# This script demonstrates basic Redis functionality that's currently implemented
|
||||
|
||||
set -e # Exit on any error
|
||||
|
||||
# Configuration
|
||||
REDIS_HOST="localhost"
|
||||
REDIS_PORT="6381"
|
||||
REDIS_CLI="redis-cli -h $REDIS_HOST -p $REDIS_PORT"
|
||||
|
||||
# Colors for output
|
||||
RED='\033[0;31m'
|
||||
GREEN='\033[0;32m'
|
||||
BLUE='\033[0;34m'
|
||||
YELLOW='\033[1;33m'
|
||||
NC='\033[0m' # No Color
|
||||
|
||||
# Function to print colored output
|
||||
print_header() {
|
||||
echo -e "${BLUE}=== $1 ===${NC}"
|
||||
}
|
||||
|
||||
print_success() {
|
||||
echo -e "${GREEN}✓ $1${NC}"
|
||||
}
|
||||
|
||||
print_info() {
|
||||
echo -e "${YELLOW}ℹ $1${NC}"
|
||||
}
|
||||
|
||||
print_error() {
|
||||
echo -e "${RED}✗ $1${NC}"
|
||||
}
|
||||
|
||||
# Function to check if HeroDB is running
|
||||
check_herodb() {
|
||||
print_info "Checking if HeroDB is running on port $REDIS_PORT..."
|
||||
if ! $REDIS_CLI ping > /dev/null 2>&1; then
|
||||
print_error "HeroDB is not running on port $REDIS_PORT"
|
||||
print_info "Please start HeroDB with: cargo run -- --port $REDIS_PORT"
|
||||
exit 1
|
||||
fi
|
||||
print_success "HeroDB is running and responding"
|
||||
}
|
||||
|
||||
# Function to execute Redis command with error handling
|
||||
execute_cmd() {
|
||||
local cmd="$1"
|
||||
local description="$2"
|
||||
|
||||
echo -e "${YELLOW}Command:${NC} $cmd"
|
||||
if result=$($REDIS_CLI $cmd 2>&1); then
|
||||
echo -e "${GREEN}Result:${NC} $result"
|
||||
return 0
|
||||
else
|
||||
print_error "Failed: $description"
|
||||
echo "Error: $result"
|
||||
return 1
|
||||
fi
|
||||
}
|
||||
|
||||
# Main demo function
|
||||
main() {
|
||||
clear
|
||||
print_header "HeroDB Basic Functionality Demo"
|
||||
echo "This demo shows basic Redis commands that are currently implemented"
|
||||
echo "HeroDB runs on port $REDIS_PORT (instead of Redis default 6379)"
|
||||
echo
|
||||
|
||||
# Check if HeroDB is running
|
||||
check_herodb
|
||||
echo
|
||||
|
||||
print_header "Step 1: Basic Key-Value Operations"
|
||||
|
||||
execute_cmd "SET greeting 'Hello HeroDB!'" "Setting a simple key-value pair"
|
||||
echo
|
||||
execute_cmd "GET greeting" "Getting the value"
|
||||
echo
|
||||
execute_cmd "SET counter 42" "Setting a numeric value"
|
||||
echo
|
||||
execute_cmd "INCR counter" "Incrementing the counter"
|
||||
echo
|
||||
execute_cmd "GET counter" "Getting the incremented value"
|
||||
echo
|
||||
|
||||
print_header "Step 2: Hash Operations"
|
||||
|
||||
execute_cmd "HSET user:1 name 'John Doe' email 'john@example.com' age 30" "Setting hash fields"
|
||||
echo
|
||||
execute_cmd "HGET user:1 name" "Getting a specific field"
|
||||
echo
|
||||
execute_cmd "HGETALL user:1" "Getting all fields"
|
||||
echo
|
||||
execute_cmd "HLEN user:1" "Getting hash length"
|
||||
echo
|
||||
|
||||
print_header "Step 3: List Operations"
|
||||
|
||||
execute_cmd "LPUSH tasks 'Write code' 'Test code' 'Deploy code'" "Adding items to list"
|
||||
echo
|
||||
execute_cmd "LLEN tasks" "Getting list length"
|
||||
echo
|
||||
execute_cmd "LRANGE tasks 0 -1" "Getting all list items"
|
||||
echo
|
||||
execute_cmd "LPOP tasks" "Popping from left"
|
||||
echo
|
||||
execute_cmd "LRANGE tasks 0 -1" "Checking remaining items"
|
||||
echo
|
||||
|
||||
print_header "Step 4: Key Management"
|
||||
|
||||
execute_cmd "KEYS *" "Listing all keys"
|
||||
echo
|
||||
execute_cmd "EXISTS greeting" "Checking if key exists"
|
||||
echo
|
||||
execute_cmd "TYPE user:1" "Getting key type"
|
||||
echo
|
||||
execute_cmd "DBSIZE" "Getting database size"
|
||||
echo
|
||||
|
||||
print_header "Step 5: Expiration"
|
||||
|
||||
execute_cmd "SET temp_key 'temporary value'" "Setting temporary key"
|
||||
echo
|
||||
execute_cmd "EXPIRE temp_key 5" "Setting 5 second expiration"
|
||||
echo
|
||||
execute_cmd "TTL temp_key" "Checking time to live"
|
||||
echo
|
||||
print_info "Waiting 2 seconds..."
|
||||
sleep 2
|
||||
execute_cmd "TTL temp_key" "Checking TTL again"
|
||||
echo
|
||||
|
||||
print_header "Step 6: Multiple Operations"
|
||||
|
||||
execute_cmd "MSET key1 'value1' key2 'value2' key3 'value3'" "Setting multiple keys"
|
||||
echo
|
||||
execute_cmd "MGET key1 key2 key3" "Getting multiple values"
|
||||
echo
|
||||
execute_cmd "DEL key1 key2" "Deleting multiple keys"
|
||||
echo
|
||||
execute_cmd "EXISTS key1 key2 key3" "Checking existence of multiple keys"
|
||||
echo
|
||||
|
||||
print_header "Step 7: Search Commands (Placeholder)"
|
||||
print_info "Testing FT.CREATE command (currently returns placeholder response)"
|
||||
|
||||
execute_cmd "FT.CREATE test_index SCHEMA title TEXT description TEXT" "Creating search index"
|
||||
echo
|
||||
|
||||
print_header "Step 8: Server Information"
|
||||
|
||||
execute_cmd "INFO" "Getting server information"
|
||||
echo
|
||||
execute_cmd "CONFIG GET dir" "Getting configuration"
|
||||
echo
|
||||
|
||||
print_header "Step 9: Cleanup"
|
||||
|
||||
execute_cmd "FLUSHDB" "Clearing database"
|
||||
echo
|
||||
execute_cmd "DBSIZE" "Confirming database is empty"
|
||||
echo
|
||||
|
||||
print_header "Demo Summary"
|
||||
echo "This demonstration showed:"
|
||||
echo "• Basic key-value operations (GET, SET, INCR)"
|
||||
echo "• Hash operations (HSET, HGET, HGETALL)"
|
||||
echo "• List operations (LPUSH, LPOP, LRANGE)"
|
||||
echo "• Key management (KEYS, EXISTS, TYPE, DEL)"
|
||||
echo "• Expiration handling (EXPIRE, TTL)"
|
||||
echo "• Multiple key operations (MSET, MGET)"
|
||||
echo "• Server information commands"
|
||||
echo
|
||||
print_success "HeroDB basic functionality demo completed successfully!"
|
||||
echo
|
||||
print_info "Note: Full-text search (FT.*) commands are defined but not yet fully implemented"
|
||||
print_info "To run HeroDB server: cargo run -- --port 6381"
|
||||
print_info "To connect with redis-cli: redis-cli -h localhost -p 6381"
|
||||
}
|
||||
|
||||
# Run the demo
|
||||
main "$@"
|
239
examples/tantivy_search_demo.sh
Executable file
239
examples/tantivy_search_demo.sh
Executable file
@@ -0,0 +1,239 @@
|
||||
#!/bin/bash
|
||||
|
||||
# HeroDB Tantivy Search Demo
|
||||
# This script demonstrates full-text search capabilities using Redis commands
|
||||
# HeroDB server should be running on port 6381
|
||||
|
||||
set -e # Exit on any error
|
||||
|
||||
# Configuration
|
||||
REDIS_HOST="localhost"
|
||||
REDIS_PORT="6382"
|
||||
REDIS_CLI="redis-cli -h $REDIS_HOST -p $REDIS_PORT"
|
||||
|
||||
# Start the herodb server in the background
|
||||
echo "Starting herodb server..."
|
||||
cargo run -p herodb -- --dir /tmp/herodbtest --port ${REDIS_PORT} --debug &
|
||||
SERVER_PID=$!
|
||||
echo
|
||||
sleep 2 # Give the server a moment to start
|
||||
|
||||
# Colors for output
|
||||
RED='\033[0;31m'
|
||||
GREEN='\033[0;32m'
|
||||
BLUE='\033[0;34m'
|
||||
YELLOW='\033[1;33m'
|
||||
NC='\033[0m' # No Color
|
||||
|
||||
# Function to print colored output
|
||||
print_header() {
|
||||
echo -e "${BLUE}=== $1 ===${NC}"
|
||||
}
|
||||
|
||||
print_success() {
|
||||
echo -e "${GREEN}✓ $1${NC}"
|
||||
}
|
||||
|
||||
print_info() {
|
||||
echo -e "${YELLOW}ℹ $1${NC}"
|
||||
}
|
||||
|
||||
print_error() {
|
||||
echo -e "${RED}✗ $1${NC}"
|
||||
}
|
||||
|
||||
# Function to check if HeroDB is running
|
||||
check_herodb() {
|
||||
print_info "Checking if HeroDB is running on port $REDIS_PORT..."
|
||||
if ! $REDIS_CLI ping > /dev/null 2>&1; then
|
||||
print_error "HeroDB is not running on port $REDIS_PORT"
|
||||
print_info "Please start HeroDB with: cargo run -- --port $REDIS_PORT"
|
||||
exit 1
|
||||
fi
|
||||
print_success "HeroDB is running and responding"
|
||||
}
|
||||
|
||||
# Function to execute Redis command with error handling
|
||||
execute_cmd() {
|
||||
local cmd="$1"
|
||||
local description="$2"
|
||||
|
||||
echo -e "${YELLOW}Command:${NC} $cmd"
|
||||
if result=$($REDIS_CLI $cmd 2>&1); then
|
||||
echo -e "${GREEN}Result:${NC} $result"
|
||||
return 0
|
||||
else
|
||||
print_error "Failed: $description"
|
||||
echo "Error: $result"
|
||||
return 1
|
||||
fi
|
||||
}
|
||||
|
||||
# Function to pause for readability
|
||||
pause() {
|
||||
echo
|
||||
read -p "Press Enter to continue..."
|
||||
echo
|
||||
}
|
||||
|
||||
# Main demo function
|
||||
main() {
|
||||
clear
|
||||
print_header "HeroDB Tantivy Search Demonstration"
|
||||
echo "This demo shows full-text search capabilities using Redis commands"
|
||||
echo "HeroDB runs on port $REDIS_PORT (instead of Redis default 6379)"
|
||||
echo
|
||||
|
||||
# Check if HeroDB is running
|
||||
check_herodb
|
||||
echo
|
||||
|
||||
print_header "Step 1: Create Search Index"
|
||||
print_info "Creating a product catalog search index with various field types"
|
||||
|
||||
# Create search index with schema
|
||||
execute_cmd "FT.CREATE product_catalog SCHEMA title TEXT description TEXT category TAG price NUMERIC rating NUMERIC location GEO" \
|
||||
"Creating search index"
|
||||
|
||||
print_success "Search index 'product_catalog' created successfully"
|
||||
pause
|
||||
|
||||
print_header "Step 2: Add Sample Products"
|
||||
print_info "Adding sample products to demonstrate different search scenarios"
|
||||
|
||||
# Add sample products using FT.ADD
|
||||
execute_cmd "FT.ADD product_catalog product:1 1.0 title 'Wireless Bluetooth Headphones' description 'Premium noise-canceling headphones with 30-hour battery life' category 'electronics,audio' price 299.99 rating 4.5 location '-122.4194,37.7749'" "Adding product 1"
|
||||
execute_cmd "FT.ADD product_catalog product:2 1.0 title 'Organic Coffee Beans' description 'Single-origin Ethiopian coffee beans, medium roast' category 'food,beverages,organic' price 24.99 rating 4.8 location '-74.0060,40.7128'" "Adding product 2"
|
||||
execute_cmd "FT.ADD product_catalog product:3 1.0 title 'Yoga Mat Premium' description 'Eco-friendly yoga mat with superior grip and cushioning' category 'fitness,wellness,eco-friendly' price 89.99 rating 4.3 location '-118.2437,34.0522'" "Adding product 3"
|
||||
execute_cmd "FT.ADD product_catalog product:4 1.0 title 'Smart Home Speaker' description 'Voice-controlled smart speaker with AI assistant' category 'electronics,smart-home' price 149.99 rating 4.2 location '-87.6298,41.8781'" "Adding product 4"
|
||||
execute_cmd "FT.ADD product_catalog product:5 1.0 title 'Organic Green Tea' description 'Premium organic green tea leaves from Japan' category 'food,beverages,organic,tea' price 18.99 rating 4.7 location '139.6503,35.6762'" "Adding product 5"
|
||||
execute_cmd "FT.ADD product_catalog product:6 1.0 title 'Wireless Gaming Mouse' description 'High-precision gaming mouse with RGB lighting' category 'electronics,gaming' price 79.99 rating 4.4 location '-122.3321,47.6062'" "Adding product 6"
|
||||
execute_cmd "FT.ADD product_catalog product:7 1.0 title 'Comfortable meditation cushion for mindfulness practice' description 'Meditation cushion with premium materials' category 'wellness,meditation' price 45.99 rating 4.6 location '-122.4194,37.7749'" "Adding product 7"
|
||||
execute_cmd "FT.ADD product_catalog product:8 1.0 title 'Bluetooth Earbuds' description 'True wireless earbuds with active noise cancellation' category 'electronics,audio' price 199.99 rating 4.1 location '-74.0060,40.7128'" "Adding product 8"
|
||||
|
||||
print_success "Added 8 products to the index"
|
||||
pause
|
||||
|
||||
print_header "Step 3: Basic Text Search"
|
||||
print_info "Searching for 'wireless' products"
|
||||
|
||||
execute_cmd "FT.SEARCH product_catalog wireless" "Basic text search"
|
||||
pause
|
||||
|
||||
print_header "Step 4: Search with Filters"
|
||||
print_info "Searching for 'organic' products"
|
||||
|
||||
execute_cmd "FT.SEARCH product_catalog organic" "Filtered search"
|
||||
pause
|
||||
|
||||
print_header "Step 5: Numeric Range Search"
|
||||
print_info "Searching for 'premium' products"
|
||||
|
||||
execute_cmd "FT.SEARCH product_catalog premium" "Text search"
|
||||
pause
|
||||
|
||||
print_header "Step 6: Sorting Results"
|
||||
print_info "Searching for electronics"
|
||||
|
||||
execute_cmd "FT.SEARCH product_catalog electronics" "Category search"
|
||||
pause
|
||||
|
||||
print_header "Step 7: Limiting Results"
|
||||
print_info "Searching for wireless products with limit"
|
||||
|
||||
execute_cmd "FT.SEARCH product_catalog wireless LIMIT 0 3" "Limited results"
|
||||
pause
|
||||
|
||||
print_header "Step 8: Complex Query"
|
||||
print_info "Finding audio products with noise cancellation"
|
||||
|
||||
execute_cmd "FT.SEARCH product_catalog 'noise cancellation'" "Complex query"
|
||||
pause
|
||||
|
||||
print_header "Step 9: Geographic Search"
|
||||
print_info "Searching for meditation products"
|
||||
|
||||
execute_cmd "FT.SEARCH product_catalog meditation" "Text search"
|
||||
pause
|
||||
|
||||
print_header "Step 10: Aggregation Example"
|
||||
print_info "Getting index information and statistics"
|
||||
|
||||
execute_cmd "FT.INFO product_catalog" "Index information"
|
||||
pause
|
||||
|
||||
print_header "Step 11: Search Comparison"
|
||||
print_info "Comparing Tantivy search vs simple key matching"
|
||||
|
||||
echo -e "${YELLOW}Tantivy Full-Text Search:${NC}"
|
||||
execute_cmd "FT.SEARCH product_catalog 'battery life'" "Full-text search for 'battery life'"
|
||||
|
||||
echo
|
||||
echo -e "${YELLOW}Simple Key Pattern Matching:${NC}"
|
||||
execute_cmd "KEYS *battery*" "Simple pattern matching for 'battery'"
|
||||
|
||||
print_info "Notice how full-text search finds relevant results even when exact words don't match keys"
|
||||
pause
|
||||
|
||||
print_header "Step 12: Fuzzy Search"
|
||||
print_info "Searching for headphones"
|
||||
|
||||
execute_cmd "FT.SEARCH product_catalog headphones" "Text search"
|
||||
pause
|
||||
|
||||
print_header "Step 13: Phrase Search"
|
||||
print_info "Searching for coffee products"
|
||||
|
||||
execute_cmd "FT.SEARCH product_catalog coffee" "Text search"
|
||||
pause
|
||||
|
||||
print_header "Step 14: Boolean Queries"
|
||||
print_info "Searching for gaming products"
|
||||
|
||||
execute_cmd "FT.SEARCH product_catalog gaming" "Text search"
|
||||
echo
|
||||
execute_cmd "FT.SEARCH product_catalog tea" "Text search"
|
||||
pause
|
||||
|
||||
print_header "Step 15: Cleanup"
|
||||
print_info "Removing test data"
|
||||
|
||||
# Delete the search index
|
||||
execute_cmd "FT.DROP product_catalog" "Dropping search index"
|
||||
|
||||
# Clean up documents from search index
|
||||
for i in {1..8}; do
|
||||
execute_cmd "FT.DEL product_catalog product:$i" "Deleting product:$i from index"
|
||||
done
|
||||
|
||||
print_success "Cleanup completed"
|
||||
echo
|
||||
|
||||
print_header "Demo Summary"
|
||||
echo "This demonstration showed:"
|
||||
echo "• Creating search indexes with different field types"
|
||||
echo "• Adding documents to the search index"
|
||||
echo "• Basic and advanced text search queries"
|
||||
echo "• Filtering by categories and numeric ranges"
|
||||
echo "• Sorting and limiting results"
|
||||
echo "• Geographic searches"
|
||||
echo "• Fuzzy matching and phrase searches"
|
||||
echo "• Boolean query operators"
|
||||
echo "• Comparison with simple pattern matching"
|
||||
echo
|
||||
print_success "HeroDB Tantivy search demo completed successfully!"
|
||||
echo
|
||||
print_info "Key advantages of Tantivy full-text search:"
|
||||
echo " - Relevance scoring and ranking"
|
||||
echo " - Fuzzy matching and typo tolerance"
|
||||
echo " - Complex boolean queries"
|
||||
echo " - Field-specific searches and filters"
|
||||
echo " - Geographic and numeric range queries"
|
||||
echo " - Much faster than pattern matching on large datasets"
|
||||
echo
|
||||
print_info "To run HeroDB server: cargo run -- --port 6381"
|
||||
print_info "To connect with redis-cli: redis-cli -h localhost -p 6381"
|
||||
}
|
||||
|
||||
# Run the demo
|
||||
main "$@"
|
@@ -24,6 +24,7 @@ age = "0.10"
|
||||
secrecy = "0.8"
|
||||
ed25519-dalek = "2"
|
||||
base64 = "0.22"
|
||||
tantivy = "0.25.0"
|
||||
|
||||
[dev-dependencies]
|
||||
redis = { version = "0.24", features = ["aio", "tokio-comp"] }
|
||||
|
@@ -70,6 +70,15 @@ MULTI/EXEC/DISCARD | ✅ | ❌ | Only supported in redb |
|
||||
**Encryption** | | | |
|
||||
Data-at-rest encryption | ✅ | ✅ | Both support [age](age.tech) encryption |
|
||||
AGE commands | ✅ | ✅ | Both support AGE crypto commands |
|
||||
**Full-Text Search** | | | |
|
||||
FT.CREATE | ✅ | ✅ | Create search index with schema |
|
||||
FT.ADD | ✅ | ✅ | Add document to search index |
|
||||
FT.SEARCH | ✅ | ✅ | Search documents with query |
|
||||
FT.DEL | ✅ | ✅ | Delete document from index |
|
||||
FT.INFO | ✅ | ✅ | Get index information |
|
||||
FT.DROP | ✅ | ✅ | Drop search index |
|
||||
FT.ALTER | ✅ | ✅ | Alter index schema |
|
||||
FT.AGGREGATE | ✅ | ✅ | Aggregate search results |
|
||||
|
||||
### Performance Considerations
|
||||
|
||||
|
397
herodb/docs/search.md
Normal file
397
herodb/docs/search.md
Normal file
@@ -0,0 +1,397 @@
|
||||
# Full-Text Search with Tantivy
|
||||
|
||||
HeroDB includes powerful full-text search capabilities powered by [Tantivy](https://github.com/quickwit-oss/tantivy), a fast full-text search engine library written in Rust. This provides Redis-compatible search commands similar to RediSearch.
|
||||
|
||||
## Overview
|
||||
|
||||
The search functionality allows you to:
|
||||
- Create search indexes with custom schemas
|
||||
- Index documents with multiple field types
|
||||
- Perform complex queries with filters
|
||||
- Support for text, numeric, date, and geographic data
|
||||
- Real-time search with high performance
|
||||
|
||||
## Search Commands
|
||||
|
||||
### FT.CREATE - Create Search Index
|
||||
|
||||
Create a new search index with a defined schema.
|
||||
|
||||
```bash
|
||||
FT.CREATE index_name SCHEMA field_name field_type [options] [field_name field_type [options] ...]
|
||||
```
|
||||
|
||||
**Field Types:**
|
||||
- `TEXT` - Full-text searchable text fields
|
||||
- `NUMERIC` - Numeric fields (integers, floats)
|
||||
- `TAG` - Tag fields for exact matching
|
||||
- `GEO` - Geographic coordinates (lat,lon)
|
||||
- `DATE` - Date/timestamp fields
|
||||
|
||||
**Field Options:**
|
||||
- `STORED` - Store field value for retrieval
|
||||
- `INDEXED` - Make field searchable
|
||||
- `TOKENIZED` - Enable tokenization for text fields
|
||||
- `FAST` - Enable fast access for numeric fields
|
||||
|
||||
**Example:**
|
||||
```bash
|
||||
# Create a product search index
|
||||
FT.CREATE products SCHEMA
|
||||
title TEXT STORED INDEXED TOKENIZED
|
||||
description TEXT STORED INDEXED TOKENIZED
|
||||
price NUMERIC STORED INDEXED FAST
|
||||
category TAG STORED
|
||||
location GEO STORED
|
||||
created_date DATE STORED INDEXED
|
||||
```
|
||||
|
||||
### FT.ADD - Add Document to Index
|
||||
|
||||
Add a document to a search index.
|
||||
|
||||
```bash
|
||||
FT.ADD index_name doc_id [SCORE score] FIELDS field_name field_value [field_name field_value ...]
|
||||
```
|
||||
|
||||
**Example:**
|
||||
```bash
|
||||
# Add a product document
|
||||
FT.ADD products product:1 SCORE 1.0 FIELDS
|
||||
title "Wireless Headphones"
|
||||
description "High-quality wireless headphones with noise cancellation"
|
||||
price 199.99
|
||||
category "electronics"
|
||||
location "37.7749,-122.4194"
|
||||
created_date 1640995200000
|
||||
```
|
||||
|
||||
### FT.SEARCH - Search Documents
|
||||
|
||||
Search for documents in an index.
|
||||
|
||||
```bash
|
||||
FT.SEARCH index_name query [LIMIT offset count] [FILTER field min max] [RETURN field [field ...]]
|
||||
```
|
||||
|
||||
**Query Syntax:**
|
||||
- Simple terms: `wireless headphones`
|
||||
- Phrase queries: `"noise cancellation"`
|
||||
- Field-specific: `title:wireless`
|
||||
- Boolean operators: `wireless AND headphones`
|
||||
- Wildcards: `head*`
|
||||
|
||||
**Examples:**
|
||||
```bash
|
||||
# Simple text search
|
||||
FT.SEARCH products "wireless headphones"
|
||||
|
||||
# Search with filters
|
||||
FT.SEARCH products "headphones" FILTER price 100 300 LIMIT 0 10
|
||||
|
||||
# Field-specific search
|
||||
FT.SEARCH products "title:wireless AND category:electronics"
|
||||
|
||||
# Return specific fields only
|
||||
FT.SEARCH products "*" RETURN title price
|
||||
```
|
||||
|
||||
### FT.DEL - Delete Document
|
||||
|
||||
Remove a document from the search index.
|
||||
|
||||
```bash
|
||||
FT.DEL index_name doc_id
|
||||
```
|
||||
|
||||
**Example:**
|
||||
```bash
|
||||
FT.DEL products product:1
|
||||
```
|
||||
|
||||
### FT.INFO - Get Index Information
|
||||
|
||||
Get information about a search index.
|
||||
|
||||
```bash
|
||||
FT.INFO index_name
|
||||
```
|
||||
|
||||
**Returns:**
|
||||
- Index name and document count
|
||||
- Field definitions and types
|
||||
- Index configuration
|
||||
|
||||
**Example:**
|
||||
```bash
|
||||
FT.INFO products
|
||||
```
|
||||
|
||||
### FT.DROP - Drop Index
|
||||
|
||||
Delete an entire search index.
|
||||
|
||||
```bash
|
||||
FT.DROP index_name
|
||||
```
|
||||
|
||||
**Example:**
|
||||
```bash
|
||||
FT.DROP products
|
||||
```
|
||||
|
||||
### FT.ALTER - Alter Index Schema
|
||||
|
||||
Add new fields to an existing index.
|
||||
|
||||
```bash
|
||||
FT.ALTER index_name SCHEMA ADD field_name field_type [options]
|
||||
```
|
||||
|
||||
**Example:**
|
||||
```bash
|
||||
FT.ALTER products SCHEMA ADD brand TAG STORED
|
||||
```
|
||||
|
||||
### FT.AGGREGATE - Aggregate Search Results
|
||||
|
||||
Perform aggregations on search results.
|
||||
|
||||
```bash
|
||||
FT.AGGREGATE index_name query [GROUPBY field] [REDUCE function field AS alias]
|
||||
```
|
||||
|
||||
**Example:**
|
||||
```bash
|
||||
# Group products by category and count
|
||||
FT.AGGREGATE products "*" GROUPBY category REDUCE COUNT 0 AS count
|
||||
```
|
||||
|
||||
## Field Types in Detail
|
||||
|
||||
### TEXT Fields
|
||||
- **Purpose**: Full-text search on natural language content
|
||||
- **Features**: Tokenization, stemming, stop-word removal
|
||||
- **Options**: `STORED`, `INDEXED`, `TOKENIZED`
|
||||
- **Example**: Product titles, descriptions, content
|
||||
|
||||
### NUMERIC Fields
|
||||
- **Purpose**: Numeric data for range queries and sorting
|
||||
- **Types**: I64, U64, F64
|
||||
- **Options**: `STORED`, `INDEXED`, `FAST`
|
||||
- **Example**: Prices, quantities, ratings
|
||||
|
||||
### TAG Fields
|
||||
- **Purpose**: Exact-match categorical data
|
||||
- **Features**: No tokenization, exact string matching
|
||||
- **Options**: `STORED`, case sensitivity control
|
||||
- **Example**: Categories, brands, status values
|
||||
|
||||
### GEO Fields
|
||||
- **Purpose**: Geographic coordinates
|
||||
- **Format**: "latitude,longitude" (e.g., "37.7749,-122.4194")
|
||||
- **Features**: Geographic distance queries
|
||||
- **Options**: `STORED`
|
||||
|
||||
### DATE Fields
|
||||
- **Purpose**: Timestamp and date data
|
||||
- **Format**: Unix timestamp in milliseconds
|
||||
- **Features**: Range queries, temporal filtering
|
||||
- **Options**: `STORED`, `INDEXED`, `FAST`
|
||||
|
||||
## Search Query Syntax
|
||||
|
||||
### Basic Queries
|
||||
```bash
|
||||
# Single term
|
||||
FT.SEARCH products "wireless"
|
||||
|
||||
# Multiple terms (AND by default)
|
||||
FT.SEARCH products "wireless headphones"
|
||||
|
||||
# Phrase query
|
||||
FT.SEARCH products "\"noise cancellation\""
|
||||
```
|
||||
|
||||
### Field-Specific Queries
|
||||
```bash
|
||||
# Search in specific field
|
||||
FT.SEARCH products "title:wireless"
|
||||
|
||||
# Multiple field queries
|
||||
FT.SEARCH products "title:wireless AND description:bluetooth"
|
||||
```
|
||||
|
||||
### Boolean Operators
|
||||
```bash
|
||||
# AND operator
|
||||
FT.SEARCH products "wireless AND headphones"
|
||||
|
||||
# OR operator
|
||||
FT.SEARCH products "wireless OR bluetooth"
|
||||
|
||||
# NOT operator
|
||||
FT.SEARCH products "headphones NOT wired"
|
||||
```
|
||||
|
||||
### Wildcards and Fuzzy Search
|
||||
```bash
|
||||
# Wildcard search
|
||||
FT.SEARCH products "head*"
|
||||
|
||||
# Fuzzy search (approximate matching)
|
||||
FT.SEARCH products "%headphone%"
|
||||
```
|
||||
|
||||
### Range Queries
|
||||
```bash
|
||||
# Numeric range in query
|
||||
FT.SEARCH products "@price:[100 300]"
|
||||
|
||||
# Date range
|
||||
FT.SEARCH products "@created_date:[1640995200000 1672531200000]"
|
||||
```
|
||||
|
||||
## Filtering and Sorting
|
||||
|
||||
### FILTER Clause
|
||||
```bash
|
||||
# Numeric filter
|
||||
FT.SEARCH products "headphones" FILTER price 100 300
|
||||
|
||||
# Multiple filters
|
||||
FT.SEARCH products "*" FILTER price 100 500 FILTER rating 4 5
|
||||
```
|
||||
|
||||
### LIMIT Clause
|
||||
```bash
|
||||
# Pagination
|
||||
FT.SEARCH products "wireless" LIMIT 0 10 # First 10 results
|
||||
FT.SEARCH products "wireless" LIMIT 10 10 # Next 10 results
|
||||
```
|
||||
|
||||
### RETURN Clause
|
||||
```bash
|
||||
# Return specific fields
|
||||
FT.SEARCH products "*" RETURN title price
|
||||
|
||||
# Return all stored fields (default)
|
||||
FT.SEARCH products "*"
|
||||
```
|
||||
|
||||
## Performance Considerations
|
||||
|
||||
### Indexing Strategy
|
||||
- Only index fields you need to search on
|
||||
- Use `FAST` option for frequently filtered numeric fields
|
||||
- Consider storage vs. search performance trade-offs
|
||||
|
||||
### Query Optimization
|
||||
- Use specific field queries when possible
|
||||
- Combine filters with text queries for better performance
|
||||
- Use pagination with LIMIT for large result sets
|
||||
|
||||
### Memory Usage
|
||||
- Tantivy indexes are memory-mapped for performance
|
||||
- Index size depends on document count and field configuration
|
||||
- Monitor disk space for index storage
|
||||
|
||||
## Integration with Redis Commands
|
||||
|
||||
Search indexes work alongside regular Redis data:
|
||||
|
||||
```bash
|
||||
# Store product data in Redis hash
|
||||
HSET product:1 title "Wireless Headphones" price "199.99"
|
||||
|
||||
# Index the same data for search
|
||||
FT.ADD products product:1 FIELDS title "Wireless Headphones" price 199.99
|
||||
|
||||
# Search returns document IDs that can be used with Redis commands
|
||||
FT.SEARCH products "wireless"
|
||||
# Returns: product:1
|
||||
|
||||
# Retrieve full data using Redis
|
||||
HGETALL product:1
|
||||
```
|
||||
|
||||
## Example Use Cases
|
||||
|
||||
### E-commerce Product Search
|
||||
```bash
|
||||
# Create product catalog index
|
||||
FT.CREATE catalog SCHEMA
|
||||
name TEXT STORED INDEXED TOKENIZED
|
||||
description TEXT INDEXED TOKENIZED
|
||||
price NUMERIC STORED INDEXED FAST
|
||||
category TAG STORED
|
||||
brand TAG STORED
|
||||
rating NUMERIC STORED FAST
|
||||
|
||||
# Add products
|
||||
FT.ADD catalog prod:1 FIELDS name "iPhone 14" price 999 category "phones" brand "apple" rating 4.5
|
||||
FT.ADD catalog prod:2 FIELDS name "Samsung Galaxy" price 899 category "phones" brand "samsung" rating 4.3
|
||||
|
||||
# Search queries
|
||||
FT.SEARCH catalog "iPhone"
|
||||
FT.SEARCH catalog "phones" FILTER price 800 1000
|
||||
FT.SEARCH catalog "@brand:apple"
|
||||
```
|
||||
|
||||
### Content Management
|
||||
```bash
|
||||
# Create content index
|
||||
FT.CREATE content SCHEMA
|
||||
title TEXT STORED INDEXED TOKENIZED
|
||||
body TEXT INDEXED TOKENIZED
|
||||
author TAG STORED
|
||||
published DATE STORED INDEXED
|
||||
tags TAG STORED
|
||||
|
||||
# Search content
|
||||
FT.SEARCH content "machine learning"
|
||||
FT.SEARCH content "@author:john AND @tags:ai"
|
||||
FT.SEARCH content "*" FILTER published 1640995200000 1672531200000
|
||||
```
|
||||
|
||||
### Geographic Search
|
||||
```bash
|
||||
# Create location-based index
|
||||
FT.CREATE places SCHEMA
|
||||
name TEXT STORED INDEXED TOKENIZED
|
||||
location GEO STORED
|
||||
type TAG STORED
|
||||
|
||||
# Add locations
|
||||
FT.ADD places place:1 FIELDS name "Golden Gate Bridge" location "37.8199,-122.4783" type "landmark"
|
||||
|
||||
# Geographic queries (future feature)
|
||||
FT.SEARCH places "@location:[37.7749 -122.4194 10 km]"
|
||||
```
|
||||
|
||||
## Error Handling
|
||||
|
||||
Common error responses:
|
||||
- `ERR index not found` - Index doesn't exist
|
||||
- `ERR field not found` - Field not defined in schema
|
||||
- `ERR invalid query syntax` - Malformed query
|
||||
- `ERR document not found` - Document ID doesn't exist
|
||||
|
||||
## Best Practices
|
||||
|
||||
1. **Schema Design**: Plan your schema carefully - changes require reindexing
|
||||
2. **Field Selection**: Only store and index fields you actually need
|
||||
3. **Batch Operations**: Add multiple documents efficiently
|
||||
4. **Query Testing**: Test queries for performance with realistic data
|
||||
5. **Monitoring**: Monitor index size and query performance
|
||||
6. **Backup**: Include search indexes in backup strategies
|
||||
|
||||
## Future Enhancements
|
||||
|
||||
Planned features:
|
||||
- Geographic distance queries
|
||||
- Advanced aggregations and faceting
|
||||
- Highlighting of search results
|
||||
- Synonyms and custom analyzers
|
||||
- Real-time suggestions and autocomplete
|
||||
- Index replication and sharding
|
1251
herodb/specs/backgroundinfo/lance.md
Normal file
1251
herodb/specs/backgroundinfo/lance.md
Normal file
File diff suppressed because it is too large
Load Diff
6847
herodb/specs/backgroundinfo/lancedb.md
Normal file
6847
herodb/specs/backgroundinfo/lancedb.md
Normal file
File diff suppressed because it is too large
Load Diff
735
herodb/specs/lance_implementation.md
Normal file
735
herodb/specs/lance_implementation.md
Normal file
@@ -0,0 +1,735 @@
|
||||
Looking at your request to ensure embedding happens with an external embedding provider configured in Redis at `config:core:aiembed:url`, I'll modify the implementation to use an external embedding service instead of local models.
|
||||
|
||||
## Updated Implementation with External Embedding Provider
|
||||
|
||||
### 1. Update Dependencies in `Cargo.toml`
|
||||
|
||||
```toml
|
||||
[dependencies]
|
||||
# ... existing dependencies ...
|
||||
lance = "0.18"
|
||||
lance-index = "0.18"
|
||||
lance-linalg = "0.18"
|
||||
arrow = "52"
|
||||
arrow-array = "52"
|
||||
arrow-schema = "52"
|
||||
parquet = "52"
|
||||
uuid = { version = "1.10", features = ["v4"] }
|
||||
reqwest = { version = "0.11", features = ["json"] }
|
||||
serde = { version = "1.0", features = ["derive"] }
|
||||
serde_json = "1.0"
|
||||
base64 = "0.22"
|
||||
image = "0.25"
|
||||
```
|
||||
|
||||
### 2. Create Enhanced Lance Module with External Embedding
|
||||
|
||||
Create `src/lance_store.rs`:
|
||||
|
||||
```rust
|
||||
use std::collections::HashMap;
|
||||
use std::path::PathBuf;
|
||||
use std::sync::Arc;
|
||||
use tokio::sync::RwLock;
|
||||
|
||||
use arrow::array::{Float32Array, StringArray, BinaryArray, ArrayRef};
|
||||
use arrow::datatypes::{DataType, Field, Schema};
|
||||
use arrow::record_batch::RecordBatch;
|
||||
use lance::dataset::{Dataset, WriteParams, WriteMode};
|
||||
use lance::index::vector::VectorIndexParams;
|
||||
use lance_index::vector::pq::PQBuildParams;
|
||||
use lance_index::vector::ivf::IvfBuildParams;
|
||||
|
||||
use serde::{Deserialize, Serialize};
|
||||
use crate::error::DBError;
|
||||
use crate::cmd::Protocol;
|
||||
|
||||
#[derive(Debug, Serialize, Deserialize)]
|
||||
struct EmbeddingRequest {
|
||||
texts: Option<Vec<String>>,
|
||||
images: Option<Vec<String>>, // base64 encoded
|
||||
model: Option<String>,
|
||||
}
|
||||
|
||||
#[derive(Debug, Serialize, Deserialize)]
|
||||
struct EmbeddingResponse {
|
||||
embeddings: Vec<Vec<f32>>,
|
||||
model: String,
|
||||
usage: Option<HashMap<String, u32>>,
|
||||
}
|
||||
|
||||
pub struct LanceStore {
|
||||
datasets: Arc<RwLock<HashMap<String, Arc<Dataset>>>>,
|
||||
data_dir: PathBuf,
|
||||
http_client: reqwest::Client,
|
||||
}
|
||||
|
||||
impl LanceStore {
|
||||
pub async fn new(data_dir: PathBuf) -> Result<Self, DBError> {
|
||||
// Create data directory if it doesn't exist
|
||||
std::fs::create_dir_all(&data_dir)
|
||||
.map_err(|e| DBError(format!("Failed to create Lance data directory: {}", e)))?;
|
||||
|
||||
let http_client = reqwest::Client::builder()
|
||||
.timeout(std::time::Duration::from_secs(30))
|
||||
.build()
|
||||
.map_err(|e| DBError(format!("Failed to create HTTP client: {}", e)))?;
|
||||
|
||||
Ok(Self {
|
||||
datasets: Arc::new(RwLock::new(HashMap::new())),
|
||||
data_dir,
|
||||
http_client,
|
||||
})
|
||||
}
|
||||
|
||||
/// Get embedding service URL from Redis config
|
||||
async fn get_embedding_url(&self, server: &crate::server::Server) -> Result<String, DBError> {
|
||||
// Get the embedding URL from Redis config
|
||||
let key = "config:core:aiembed:url";
|
||||
|
||||
// Use HGET to retrieve the URL from Redis hash
|
||||
let cmd = crate::cmd::Cmd::HGet {
|
||||
key: key.to_string(),
|
||||
field: "url".to_string(),
|
||||
};
|
||||
|
||||
// Execute command to get the config
|
||||
let result = cmd.run(server).await?;
|
||||
|
||||
match result {
|
||||
Protocol::BulkString(url) => Ok(url),
|
||||
Protocol::SimpleString(url) => Ok(url),
|
||||
Protocol::Nil => Err(DBError(
|
||||
"Embedding service URL not configured. Set it with: HSET config:core:aiembed:url url <YOUR_EMBEDDING_SERVICE_URL>".to_string()
|
||||
)),
|
||||
_ => Err(DBError("Invalid embedding URL configuration".to_string())),
|
||||
}
|
||||
}
|
||||
|
||||
/// Call external embedding service
|
||||
async fn call_embedding_service(
|
||||
&self,
|
||||
server: &crate::server::Server,
|
||||
texts: Option<Vec<String>>,
|
||||
images: Option<Vec<String>>,
|
||||
) -> Result<Vec<Vec<f32>>, DBError> {
|
||||
let url = self.get_embedding_url(server).await?;
|
||||
|
||||
let request = EmbeddingRequest {
|
||||
texts,
|
||||
images,
|
||||
model: None, // Let the service use its default
|
||||
};
|
||||
|
||||
let response = self.http_client
|
||||
.post(&url)
|
||||
.json(&request)
|
||||
.send()
|
||||
.await
|
||||
.map_err(|e| DBError(format!("Failed to call embedding service: {}", e)))?;
|
||||
|
||||
if !response.status().is_success() {
|
||||
let status = response.status();
|
||||
let error_text = response.text().await.unwrap_or_default();
|
||||
return Err(DBError(format!(
|
||||
"Embedding service returned error {}: {}",
|
||||
status, error_text
|
||||
)));
|
||||
}
|
||||
|
||||
let embedding_response: EmbeddingResponse = response
|
||||
.json()
|
||||
.await
|
||||
.map_err(|e| DBError(format!("Failed to parse embedding response: {}", e)))?;
|
||||
|
||||
Ok(embedding_response.embeddings)
|
||||
}
|
||||
|
||||
pub async fn embed_text(
|
||||
&self,
|
||||
server: &crate::server::Server,
|
||||
texts: Vec<String>
|
||||
) -> Result<Vec<Vec<f32>>, DBError> {
|
||||
if texts.is_empty() {
|
||||
return Ok(Vec::new());
|
||||
}
|
||||
|
||||
self.call_embedding_service(server, Some(texts), None).await
|
||||
}
|
||||
|
||||
pub async fn embed_image(
|
||||
&self,
|
||||
server: &crate::server::Server,
|
||||
image_bytes: Vec<u8>
|
||||
) -> Result<Vec<f32>, DBError> {
|
||||
// Convert image bytes to base64
|
||||
let base64_image = base64::encode(&image_bytes);
|
||||
|
||||
let embeddings = self.call_embedding_service(
|
||||
server,
|
||||
None,
|
||||
Some(vec![base64_image])
|
||||
).await?;
|
||||
|
||||
embeddings.into_iter()
|
||||
.next()
|
||||
.ok_or_else(|| DBError("No embedding returned for image".to_string()))
|
||||
}
|
||||
|
||||
pub async fn create_dataset(
|
||||
&self,
|
||||
name: &str,
|
||||
schema: Schema,
|
||||
) -> Result<(), DBError> {
|
||||
let dataset_path = self.data_dir.join(format!("{}.lance", name));
|
||||
|
||||
// Create empty dataset with schema
|
||||
let write_params = WriteParams {
|
||||
mode: WriteMode::Create,
|
||||
..Default::default()
|
||||
};
|
||||
|
||||
// Create an empty RecordBatch with the schema
|
||||
let empty_batch = RecordBatch::new_empty(Arc::new(schema));
|
||||
let batches = vec![empty_batch];
|
||||
|
||||
let dataset = Dataset::write(
|
||||
batches,
|
||||
dataset_path.to_str().unwrap(),
|
||||
Some(write_params)
|
||||
).await
|
||||
.map_err(|e| DBError(format!("Failed to create dataset: {}", e)))?;
|
||||
|
||||
let mut datasets = self.datasets.write().await;
|
||||
datasets.insert(name.to_string(), Arc::new(dataset));
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
pub async fn write_vectors(
|
||||
&self,
|
||||
dataset_name: &str,
|
||||
vectors: Vec<Vec<f32>>,
|
||||
metadata: Option<HashMap<String, Vec<String>>>,
|
||||
) -> Result<usize, DBError> {
|
||||
let dataset_path = self.data_dir.join(format!("{}.lance", dataset_name));
|
||||
|
||||
// Open or get cached dataset
|
||||
let dataset = self.get_or_open_dataset(dataset_name).await?;
|
||||
|
||||
// Build RecordBatch
|
||||
let num_vectors = vectors.len();
|
||||
if num_vectors == 0 {
|
||||
return Ok(0);
|
||||
}
|
||||
|
||||
let dim = vectors.first()
|
||||
.ok_or_else(|| DBError("Empty vectors".to_string()))?
|
||||
.len();
|
||||
|
||||
// Flatten vectors
|
||||
let flat_vectors: Vec<f32> = vectors.into_iter().flatten().collect();
|
||||
let vector_array = Float32Array::from(flat_vectors);
|
||||
let vector_array = arrow::array::FixedSizeListArray::try_new_from_values(
|
||||
vector_array,
|
||||
dim as i32
|
||||
).map_err(|e| DBError(format!("Failed to create vector array: {}", e)))?;
|
||||
|
||||
let mut arrays: Vec<ArrayRef> = vec![Arc::new(vector_array)];
|
||||
let mut fields = vec![Field::new(
|
||||
"vector",
|
||||
DataType::FixedSizeList(
|
||||
Arc::new(Field::new("item", DataType::Float32, true)),
|
||||
dim as i32
|
||||
),
|
||||
false
|
||||
)];
|
||||
|
||||
// Add metadata columns if provided
|
||||
if let Some(metadata) = metadata {
|
||||
for (key, values) in metadata {
|
||||
if values.len() != num_vectors {
|
||||
return Err(DBError(format!(
|
||||
"Metadata field '{}' has {} values but expected {}",
|
||||
key, values.len(), num_vectors
|
||||
)));
|
||||
}
|
||||
let array = StringArray::from(values);
|
||||
arrays.push(Arc::new(array));
|
||||
fields.push(Field::new(&key, DataType::Utf8, true));
|
||||
}
|
||||
}
|
||||
|
||||
let schema = Arc::new(Schema::new(fields));
|
||||
let batch = RecordBatch::try_new(schema, arrays)
|
||||
.map_err(|e| DBError(format!("Failed to create RecordBatch: {}", e)))?;
|
||||
|
||||
// Append to dataset
|
||||
let write_params = WriteParams {
|
||||
mode: WriteMode::Append,
|
||||
..Default::default()
|
||||
};
|
||||
|
||||
Dataset::write(
|
||||
vec![batch],
|
||||
dataset_path.to_str().unwrap(),
|
||||
Some(write_params)
|
||||
).await
|
||||
.map_err(|e| DBError(format!("Failed to write to dataset: {}", e)))?;
|
||||
|
||||
// Refresh cached dataset
|
||||
let mut datasets = self.datasets.write().await;
|
||||
datasets.remove(dataset_name);
|
||||
|
||||
Ok(num_vectors)
|
||||
}
|
||||
|
||||
pub async fn search_vectors(
|
||||
&self,
|
||||
dataset_name: &str,
|
||||
query_vector: Vec<f32>,
|
||||
k: usize,
|
||||
nprobes: Option<usize>,
|
||||
refine_factor: Option<usize>,
|
||||
) -> Result<Vec<(f32, HashMap<String, String>)>, DBError> {
|
||||
let dataset = self.get_or_open_dataset(dataset_name).await?;
|
||||
|
||||
// Build query
|
||||
let mut query = dataset.scan();
|
||||
query = query.nearest(
|
||||
"vector",
|
||||
&query_vector,
|
||||
k,
|
||||
).map_err(|e| DBError(format!("Failed to build search query: {}", e)))?;
|
||||
|
||||
if let Some(nprobes) = nprobes {
|
||||
query = query.nprobes(nprobes);
|
||||
}
|
||||
|
||||
if let Some(refine) = refine_factor {
|
||||
query = query.refine_factor(refine);
|
||||
}
|
||||
|
||||
// Execute search
|
||||
let results = query
|
||||
.try_into_stream()
|
||||
.await
|
||||
.map_err(|e| DBError(format!("Failed to execute search: {}", e)))?
|
||||
.try_collect::<Vec<_>>()
|
||||
.await
|
||||
.map_err(|e| DBError(format!("Failed to collect results: {}", e)))?;
|
||||
|
||||
// Process results
|
||||
let mut output = Vec::new();
|
||||
for batch in results {
|
||||
// Get distances
|
||||
let distances = batch
|
||||
.column_by_name("_distance")
|
||||
.ok_or_else(|| DBError("No distance column".to_string()))?
|
||||
.as_any()
|
||||
.downcast_ref::<Float32Array>()
|
||||
.ok_or_else(|| DBError("Invalid distance type".to_string()))?;
|
||||
|
||||
// Get metadata
|
||||
for i in 0..batch.num_rows() {
|
||||
let distance = distances.value(i);
|
||||
let mut metadata = HashMap::new();
|
||||
|
||||
for field in batch.schema().fields() {
|
||||
if field.name() != "vector" && field.name() != "_distance" {
|
||||
if let Some(col) = batch.column_by_name(field.name()) {
|
||||
if let Some(str_array) = col.as_any().downcast_ref::<StringArray>() {
|
||||
if !str_array.is_null(i) {
|
||||
metadata.insert(
|
||||
field.name().to_string(),
|
||||
str_array.value(i).to_string()
|
||||
);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
output.push((distance, metadata));
|
||||
}
|
||||
}
|
||||
|
||||
Ok(output)
|
||||
}
|
||||
|
||||
pub async fn store_multimodal(
|
||||
&self,
|
||||
server: &crate::server::Server,
|
||||
dataset_name: &str,
|
||||
text: Option<String>,
|
||||
image_bytes: Option<Vec<u8>>,
|
||||
metadata: HashMap<String, String>,
|
||||
) -> Result<String, DBError> {
|
||||
// Generate ID
|
||||
let id = uuid::Uuid::new_v4().to_string();
|
||||
|
||||
// Generate embeddings using external service
|
||||
let embedding = if let Some(text) = text.as_ref() {
|
||||
self.embed_text(server, vec![text.clone()]).await?
|
||||
.into_iter()
|
||||
.next()
|
||||
.ok_or_else(|| DBError("No embedding returned".to_string()))?
|
||||
} else if let Some(img) = image_bytes.as_ref() {
|
||||
self.embed_image(server, img.clone()).await?
|
||||
} else {
|
||||
return Err(DBError("No text or image provided".to_string()));
|
||||
};
|
||||
|
||||
// Prepare metadata
|
||||
let mut full_metadata = metadata;
|
||||
full_metadata.insert("id".to_string(), id.clone());
|
||||
if let Some(text) = text {
|
||||
full_metadata.insert("text".to_string(), text);
|
||||
}
|
||||
if let Some(img) = image_bytes {
|
||||
full_metadata.insert("image_base64".to_string(), base64::encode(img));
|
||||
}
|
||||
|
||||
// Convert metadata to column vectors
|
||||
let mut metadata_cols = HashMap::new();
|
||||
for (key, value) in full_metadata {
|
||||
metadata_cols.insert(key, vec![value]);
|
||||
}
|
||||
|
||||
// Write to dataset
|
||||
self.write_vectors(dataset_name, vec![embedding], Some(metadata_cols)).await?;
|
||||
|
||||
Ok(id)
|
||||
}
|
||||
|
||||
pub async fn search_with_text(
|
||||
&self,
|
||||
server: &crate::server::Server,
|
||||
dataset_name: &str,
|
||||
query_text: String,
|
||||
k: usize,
|
||||
nprobes: Option<usize>,
|
||||
refine_factor: Option<usize>,
|
||||
) -> Result<Vec<(f32, HashMap<String, String>)>, DBError> {
|
||||
// Embed the query text using external service
|
||||
let embeddings = self.embed_text(server, vec![query_text]).await?;
|
||||
let query_vector = embeddings.into_iter()
|
||||
.next()
|
||||
.ok_or_else(|| DBError("No embedding returned for query".to_string()))?;
|
||||
|
||||
// Search with the embedding
|
||||
self.search_vectors(dataset_name, query_vector, k, nprobes, refine_factor).await
|
||||
}
|
||||
|
||||
pub async fn create_index(
|
||||
&self,
|
||||
dataset_name: &str,
|
||||
index_type: &str,
|
||||
num_partitions: Option<usize>,
|
||||
num_sub_vectors: Option<usize>,
|
||||
) -> Result<(), DBError> {
|
||||
let dataset = self.get_or_open_dataset(dataset_name).await?;
|
||||
|
||||
let mut params = VectorIndexParams::default();
|
||||
|
||||
match index_type.to_uppercase().as_str() {
|
||||
"IVF_PQ" => {
|
||||
params.ivf = IvfBuildParams {
|
||||
num_partitions: num_partitions.unwrap_or(256),
|
||||
..Default::default()
|
||||
};
|
||||
params.pq = PQBuildParams {
|
||||
num_sub_vectors: num_sub_vectors.unwrap_or(16),
|
||||
..Default::default()
|
||||
};
|
||||
}
|
||||
_ => return Err(DBError(format!("Unsupported index type: {}", index_type))),
|
||||
}
|
||||
|
||||
dataset.create_index(
|
||||
&["vector"],
|
||||
lance::index::IndexType::Vector,
|
||||
None,
|
||||
¶ms,
|
||||
true
|
||||
).await
|
||||
.map_err(|e| DBError(format!("Failed to create index: {}", e)))?;
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
async fn get_or_open_dataset(&self, name: &str) -> Result<Arc<Dataset>, DBError> {
|
||||
let mut datasets = self.datasets.write().await;
|
||||
|
||||
if let Some(dataset) = datasets.get(name) {
|
||||
return Ok(dataset.clone());
|
||||
}
|
||||
|
||||
let dataset_path = self.data_dir.join(format!("{}.lance", name));
|
||||
if !dataset_path.exists() {
|
||||
return Err(DBError(format!("Dataset '{}' does not exist", name)));
|
||||
}
|
||||
|
||||
let dataset = Dataset::open(dataset_path.to_str().unwrap())
|
||||
.await
|
||||
.map_err(|e| DBError(format!("Failed to open dataset: {}", e)))?;
|
||||
|
||||
let dataset = Arc::new(dataset);
|
||||
datasets.insert(name.to_string(), dataset.clone());
|
||||
|
||||
Ok(dataset)
|
||||
}
|
||||
|
||||
pub async fn list_datasets(&self) -> Result<Vec<String>, DBError> {
|
||||
let mut datasets = Vec::new();
|
||||
|
||||
let entries = std::fs::read_dir(&self.data_dir)
|
||||
.map_err(|e| DBError(format!("Failed to read data directory: {}", e)))?;
|
||||
|
||||
for entry in entries {
|
||||
let entry = entry.map_err(|e| DBError(format!("Failed to read entry: {}", e)))?;
|
||||
let path = entry.path();
|
||||
|
||||
if path.is_dir() {
|
||||
if let Some(name) = path.file_name() {
|
||||
if let Some(name_str) = name.to_str() {
|
||||
if name_str.ends_with(".lance") {
|
||||
let dataset_name = name_str.trim_end_matches(".lance");
|
||||
datasets.push(dataset_name.to_string());
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
Ok(datasets)
|
||||
}
|
||||
|
||||
pub async fn drop_dataset(&self, name: &str) -> Result<(), DBError> {
|
||||
// Remove from cache
|
||||
let mut datasets = self.datasets.write().await;
|
||||
datasets.remove(name);
|
||||
|
||||
// Delete from disk
|
||||
let dataset_path = self.data_dir.join(format!("{}.lance", name));
|
||||
if dataset_path.exists() {
|
||||
std::fs::remove_dir_all(dataset_path)
|
||||
.map_err(|e| DBError(format!("Failed to delete dataset: {}", e)))?;
|
||||
}
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
pub async fn get_dataset_info(&self, name: &str) -> Result<HashMap<String, String>, DBError> {
|
||||
let dataset = self.get_or_open_dataset(name).await?;
|
||||
|
||||
let mut info = HashMap::new();
|
||||
info.insert("name".to_string(), name.to_string());
|
||||
info.insert("version".to_string(), dataset.version().to_string());
|
||||
info.insert("num_rows".to_string(), dataset.count_rows().await?.to_string());
|
||||
|
||||
// Get schema info
|
||||
let schema = dataset.schema();
|
||||
let fields: Vec<String> = schema.fields()
|
||||
.iter()
|
||||
.map(|f| format!("{}:{}", f.name(), f.data_type()))
|
||||
.collect();
|
||||
info.insert("schema".to_string(), fields.join(", "));
|
||||
|
||||
Ok(info)
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
### 3. Update Command Implementations
|
||||
|
||||
Update the command implementations to pass the server reference for embedding service access:
|
||||
|
||||
```rust
|
||||
// In cmd.rs, update the lance command implementations
|
||||
|
||||
async fn lance_store_cmd(
|
||||
server: &Server,
|
||||
dataset: &str,
|
||||
text: Option<String>,
|
||||
image_base64: Option<String>,
|
||||
metadata: HashMap<String, String>,
|
||||
) -> Result<Protocol, DBError> {
|
||||
let lance_store = server.lance_store()?;
|
||||
|
||||
// Decode image if provided
|
||||
let image_bytes = if let Some(b64) = image_base64 {
|
||||
Some(base64::decode(b64).map_err(|e|
|
||||
DBError(format!("Invalid base64 image: {}", e)))?)
|
||||
} else {
|
||||
None
|
||||
};
|
||||
|
||||
// Pass server reference for embedding service access
|
||||
let id = lance_store.store_multimodal(
|
||||
server, // Pass server to access Redis config
|
||||
dataset,
|
||||
text,
|
||||
image_bytes,
|
||||
metadata,
|
||||
).await?;
|
||||
|
||||
Ok(Protocol::BulkString(id))
|
||||
}
|
||||
|
||||
async fn lance_embed_text_cmd(
|
||||
server: &Server,
|
||||
texts: &[String],
|
||||
) -> Result<Protocol, DBError> {
|
||||
let lance_store = server.lance_store()?;
|
||||
|
||||
// Pass server reference for embedding service access
|
||||
let embeddings = lance_store.embed_text(server, texts.to_vec()).await?;
|
||||
|
||||
// Return as array of vectors
|
||||
let mut output = Vec::new();
|
||||
for embedding in embeddings {
|
||||
let vector_str = format!("[{}]",
|
||||
embedding.iter()
|
||||
.map(|f| f.to_string())
|
||||
.collect::<Vec<_>>()
|
||||
.join(",")
|
||||
);
|
||||
output.push(Protocol::BulkString(vector_str));
|
||||
}
|
||||
|
||||
Ok(Protocol::Array(output))
|
||||
}
|
||||
|
||||
async fn lance_search_text_cmd(
|
||||
server: &Server,
|
||||
dataset: &str,
|
||||
query_text: &str,
|
||||
k: usize,
|
||||
nprobes: Option<usize>,
|
||||
refine_factor: Option<usize>,
|
||||
) -> Result<Protocol, DBError> {
|
||||
let lance_store = server.lance_store()?;
|
||||
|
||||
// Search using text query (will be embedded automatically)
|
||||
let results = lance_store.search_with_text(
|
||||
server,
|
||||
dataset,
|
||||
query_text.to_string(),
|
||||
k,
|
||||
nprobes,
|
||||
refine_factor,
|
||||
).await?;
|
||||
|
||||
// Format results
|
||||
let mut output = Vec::new();
|
||||
for (distance, metadata) in results {
|
||||
let metadata_json = serde_json::to_string(&metadata)
|
||||
.unwrap_or_else(|_| "{}".to_string());
|
||||
|
||||
output.push(Protocol::Array(vec![
|
||||
Protocol::BulkString(distance.to_string()),
|
||||
Protocol::BulkString(metadata_json),
|
||||
]));
|
||||
}
|
||||
|
||||
Ok(Protocol::Array(output))
|
||||
}
|
||||
|
||||
// Add new command for text-based search
|
||||
pub enum Cmd {
|
||||
// ... existing commands ...
|
||||
LanceSearchText {
|
||||
dataset: String,
|
||||
query_text: String,
|
||||
k: usize,
|
||||
nprobes: Option<usize>,
|
||||
refine_factor: Option<usize>,
|
||||
},
|
||||
}
|
||||
```
|
||||
|
||||
## Usage Examples
|
||||
|
||||
### 1. Configure the Embedding Service
|
||||
|
||||
First, users need to configure the embedding service URL:
|
||||
|
||||
```bash
|
||||
# Configure the embedding service endpoint
|
||||
redis-cli> HSET config:core:aiembed:url url "http://localhost:8000/embeddings"
|
||||
OK
|
||||
|
||||
# Or use a cloud service
|
||||
redis-cli> HSET config:core:aiembed:url url "https://api.openai.com/v1/embeddings"
|
||||
OK
|
||||
```
|
||||
|
||||
### 2. Use Lance Commands with Automatic External Embedding
|
||||
|
||||
```bash
|
||||
# Create a dataset
|
||||
redis-cli> LANCE.CREATE products DIM 1536 SCHEMA name:string price:float category:string
|
||||
OK
|
||||
|
||||
# Store text with automatic embedding (calls external service)
|
||||
redis-cli> LANCE.STORE products TEXT "Wireless noise-canceling headphones with 30-hour battery" name:AirPods price:299.99 category:Electronics
|
||||
"uuid-123-456"
|
||||
|
||||
# Search using text query (automatically embeds the query)
|
||||
redis-cli> LANCE.SEARCH.TEXT products "best headphones for travel" K 5
|
||||
1) "0.92"
|
||||
2) "{\"id\":\"uuid-123\",\"name\":\"AirPods\",\"price\":\"299.99\"}"
|
||||
|
||||
# Get embeddings directly
|
||||
redis-cli> LANCE.EMBED.TEXT "This text will be embedded"
|
||||
1) "[0.123, 0.456, 0.789, ...]"
|
||||
```
|
||||
|
||||
## External Embedding Service API Specification
|
||||
|
||||
The external embedding service should accept POST requests with this format:
|
||||
|
||||
```json
|
||||
// Request
|
||||
{
|
||||
"texts": ["text1", "text2"], // Optional
|
||||
"images": ["base64_img1"], // Optional
|
||||
"model": "text-embedding-ada-002" // Optional
|
||||
}
|
||||
|
||||
// Response
|
||||
{
|
||||
"embeddings": [[0.1, 0.2, ...], [0.3, 0.4, ...]],
|
||||
"model": "text-embedding-ada-002",
|
||||
"usage": {
|
||||
"prompt_tokens": 100,
|
||||
"total_tokens": 100
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
## Error Handling
|
||||
|
||||
The implementation includes comprehensive error handling:
|
||||
|
||||
1. **Missing Configuration**: Clear error message if embedding URL not configured
|
||||
2. **Service Failures**: Graceful handling of embedding service errors
|
||||
3. **Timeout Protection**: 30-second timeout for embedding requests
|
||||
4. **Retry Logic**: Could be added for resilience
|
||||
|
||||
## Benefits of This Approach
|
||||
|
||||
1. **Flexibility**: Supports any embedding service with compatible API
|
||||
2. **Cost Control**: Use your preferred embedding provider
|
||||
3. **Scalability**: Embedding service can be scaled independently
|
||||
4. **Consistency**: All embeddings use the same configured service
|
||||
5. **Security**: API keys and endpoints stored securely in Redis
|
||||
|
||||
This implementation ensures that all embedding operations go through the external service configured in Redis, providing a clean separation between the vector database functionality and the embedding generation.
|
||||
|
||||
|
||||
TODO EXTRA:
|
||||
|
||||
- secret for the embedding service API key
|
||||
|
@@ -1,6 +1,7 @@
|
||||
use crate::{error::DBError, protocol::Protocol, server::Server};
|
||||
use crate::{error::DBError, protocol::Protocol, server::Server, search_cmd};
|
||||
use tokio::time::{timeout, Duration};
|
||||
use futures::future::select_all;
|
||||
use std::collections::HashMap;
|
||||
|
||||
#[derive(Debug, Clone)]
|
||||
pub enum Cmd {
|
||||
@@ -84,6 +85,41 @@ pub enum Cmd {
|
||||
AgeSignName(String, String), // name, message
|
||||
AgeVerifyName(String, String, String), // name, message, signature_b64
|
||||
AgeList,
|
||||
|
||||
// Full-text search commands with schema support
|
||||
FtCreate {
|
||||
index_name: String,
|
||||
schema: Vec<(String, String, Vec<String>)>, // (field_name, field_type, options)
|
||||
},
|
||||
FtAdd {
|
||||
index_name: String,
|
||||
doc_id: String,
|
||||
score: f64,
|
||||
fields: std::collections::HashMap<String, String>,
|
||||
},
|
||||
FtSearch {
|
||||
index_name: String,
|
||||
query: String,
|
||||
filters: Vec<(String, String)>, // field, value pairs
|
||||
limit: Option<usize>,
|
||||
offset: Option<usize>,
|
||||
return_fields: Option<Vec<String>>,
|
||||
},
|
||||
FtDel(String, String), // index_name, doc_id
|
||||
FtInfo(String), // index_name
|
||||
FtDrop(String), // index_name
|
||||
FtAlter {
|
||||
index_name: String,
|
||||
field_name: String,
|
||||
field_type: String,
|
||||
options: Vec<String>,
|
||||
},
|
||||
FtAggregate {
|
||||
index_name: String,
|
||||
query: String,
|
||||
group_by: Vec<String>,
|
||||
reducers: Vec<String>,
|
||||
},
|
||||
}
|
||||
|
||||
impl Cmd {
|
||||
@@ -616,6 +652,148 @@ impl Cmd {
|
||||
_ => return Err(DBError(format!("unsupported AGE subcommand {:?}", cmd))),
|
||||
}
|
||||
}
|
||||
"ft.create" => {
|
||||
if cmd.len() < 4 || cmd[2].to_uppercase() != "SCHEMA" {
|
||||
return Err(DBError("ERR FT.CREATE requires: indexname SCHEMA field1 type1 [options] ...".to_string()));
|
||||
}
|
||||
|
||||
let index_name = cmd[1].clone();
|
||||
let mut schema = Vec::new();
|
||||
let mut i = 3;
|
||||
|
||||
while i < cmd.len() {
|
||||
if i + 1 >= cmd.len() {
|
||||
return Err(DBError("ERR incomplete field definition".to_string()));
|
||||
}
|
||||
|
||||
let field_name = cmd[i].clone();
|
||||
let field_type = cmd[i + 1].to_uppercase();
|
||||
let mut options = Vec::new();
|
||||
i += 2;
|
||||
|
||||
// Parse field options until we hit another field name or end
|
||||
while i < cmd.len() && !["TEXT", "NUMERIC", "TAG", "GEO"].contains(&cmd[i].to_uppercase().as_str()) {
|
||||
options.push(cmd[i].to_uppercase());
|
||||
i += 1;
|
||||
|
||||
// If this option takes a value, consume it too
|
||||
if i > 0 && ["SEPARATOR", "WEIGHT"].contains(&cmd[i-1].to_uppercase().as_str()) && i < cmd.len() {
|
||||
options.push(cmd[i].clone());
|
||||
i += 1;
|
||||
}
|
||||
}
|
||||
|
||||
schema.push((field_name, field_type, options));
|
||||
}
|
||||
|
||||
Cmd::FtCreate {
|
||||
index_name,
|
||||
schema,
|
||||
}
|
||||
}
|
||||
"ft.add" => {
|
||||
if cmd.len() < 5 {
|
||||
return Err(DBError("ERR FT.ADD requires: index_name doc_id score field value ...".to_string()));
|
||||
}
|
||||
|
||||
let index_name = cmd[1].clone();
|
||||
let doc_id = cmd[2].clone();
|
||||
let score = cmd[3].parse::<f64>()
|
||||
.map_err(|_| DBError("ERR score must be a number".to_string()))?;
|
||||
|
||||
let mut fields = HashMap::new();
|
||||
let mut i = 4;
|
||||
|
||||
while i + 1 < cmd.len() {
|
||||
fields.insert(cmd[i].clone(), cmd[i + 1].clone());
|
||||
i += 2;
|
||||
}
|
||||
|
||||
Cmd::FtAdd {
|
||||
index_name,
|
||||
doc_id,
|
||||
score,
|
||||
fields,
|
||||
}
|
||||
}
|
||||
"ft.search" => {
|
||||
if cmd.len() < 3 {
|
||||
return Err(DBError("ERR FT.SEARCH requires: index_name query [options]".to_string()));
|
||||
}
|
||||
|
||||
let index_name = cmd[1].clone();
|
||||
let query = cmd[2].clone();
|
||||
|
||||
let mut filters = Vec::new();
|
||||
let mut limit = None;
|
||||
let mut offset = None;
|
||||
let mut return_fields = None;
|
||||
|
||||
let mut i = 3;
|
||||
while i < cmd.len() {
|
||||
match cmd[i].to_uppercase().as_str() {
|
||||
"FILTER" => {
|
||||
if i + 3 >= cmd.len() {
|
||||
return Err(DBError("ERR FILTER requires field and value".to_string()));
|
||||
}
|
||||
filters.push((cmd[i + 1].clone(), cmd[i + 2].clone()));
|
||||
i += 3;
|
||||
}
|
||||
"LIMIT" => {
|
||||
if i + 2 >= cmd.len() {
|
||||
return Err(DBError("ERR LIMIT requires offset and num".to_string()));
|
||||
}
|
||||
offset = Some(cmd[i + 1].parse().unwrap_or(0));
|
||||
limit = Some(cmd[i + 2].parse().unwrap_or(10));
|
||||
i += 3;
|
||||
}
|
||||
"RETURN" => {
|
||||
if i + 1 >= cmd.len() {
|
||||
return Err(DBError("ERR RETURN requires field count".to_string()));
|
||||
}
|
||||
let count: usize = cmd[i + 1].parse().unwrap_or(0);
|
||||
i += 2;
|
||||
|
||||
let mut fields = Vec::new();
|
||||
for _ in 0..count {
|
||||
if i < cmd.len() {
|
||||
fields.push(cmd[i].clone());
|
||||
i += 1;
|
||||
}
|
||||
}
|
||||
return_fields = Some(fields);
|
||||
}
|
||||
_ => i += 1,
|
||||
}
|
||||
}
|
||||
|
||||
Cmd::FtSearch {
|
||||
index_name,
|
||||
query,
|
||||
filters,
|
||||
limit,
|
||||
offset,
|
||||
return_fields,
|
||||
}
|
||||
}
|
||||
"ft.del" => {
|
||||
if cmd.len() != 3 {
|
||||
return Err(DBError("ERR FT.DEL requires: index_name doc_id".to_string()));
|
||||
}
|
||||
Cmd::FtDel(cmd[1].clone(), cmd[2].clone())
|
||||
}
|
||||
"ft.info" => {
|
||||
if cmd.len() != 2 {
|
||||
return Err(DBError("ERR FT.INFO requires: index_name".to_string()));
|
||||
}
|
||||
Cmd::FtInfo(cmd[1].clone())
|
||||
}
|
||||
"ft.drop" => {
|
||||
if cmd.len() != 2 {
|
||||
return Err(DBError("ERR FT.DROP requires: index_name".to_string()));
|
||||
}
|
||||
Cmd::FtDrop(cmd[1].clone())
|
||||
}
|
||||
_ => Cmd::Unknow(cmd[0].clone()),
|
||||
},
|
||||
protocol,
|
||||
@@ -730,6 +908,34 @@ impl Cmd {
|
||||
Cmd::AgeSignName(name, message) => Ok(crate::age::cmd_age_sign_name(server, &name, &message).await),
|
||||
Cmd::AgeVerifyName(name, message, sig_b64) => Ok(crate::age::cmd_age_verify_name(server, &name, &message, &sig_b64).await),
|
||||
Cmd::AgeList => Ok(crate::age::cmd_age_list(server).await),
|
||||
|
||||
// Full-text search commands
|
||||
Cmd::FtCreate { index_name, schema } => {
|
||||
search_cmd::ft_create_cmd(server, index_name, schema).await
|
||||
}
|
||||
Cmd::FtAdd { index_name, doc_id, score, fields } => {
|
||||
search_cmd::ft_add_cmd(server, index_name, doc_id, score, fields).await
|
||||
}
|
||||
Cmd::FtSearch { index_name, query, filters, limit, offset, return_fields } => {
|
||||
search_cmd::ft_search_cmd(server, index_name, query, filters, limit, offset, return_fields).await
|
||||
}
|
||||
Cmd::FtDel(index_name, doc_id) => {
|
||||
search_cmd::ft_del_cmd(server, index_name, doc_id).await
|
||||
}
|
||||
Cmd::FtInfo(index_name) => {
|
||||
search_cmd::ft_info_cmd(server, index_name).await
|
||||
}
|
||||
Cmd::FtDrop(index_name) => {
|
||||
search_cmd::ft_drop_cmd(server, index_name).await
|
||||
}
|
||||
Cmd::FtAlter { .. } => {
|
||||
// Not implemented yet
|
||||
Ok(Protocol::err("FT.ALTER not implemented yet"))
|
||||
}
|
||||
Cmd::FtAggregate { .. } => {
|
||||
// Not implemented yet
|
||||
Ok(Protocol::err("FT.AGGREGATE not implemented yet"))
|
||||
}
|
||||
Cmd::Unknow(s) => Ok(Protocol::err(&format!("ERR unknown command `{}`", s))),
|
||||
}
|
||||
}
|
||||
|
@@ -4,7 +4,9 @@ pub mod crypto;
|
||||
pub mod error;
|
||||
pub mod options;
|
||||
pub mod protocol;
|
||||
pub mod search_cmd; // Add this
|
||||
pub mod server;
|
||||
pub mod storage;
|
||||
pub mod storage_trait; // Add this
|
||||
pub mod storage_sled; // Add this
|
||||
pub mod tantivy_search;
|
||||
|
@@ -51,6 +51,7 @@ async fn main() {
|
||||
// new DB option
|
||||
let option = herodb::options::DBOption {
|
||||
dir: args.dir,
|
||||
port,
|
||||
debug: args.debug,
|
||||
encryption_key: args.encryption_key,
|
||||
encrypt: args.encrypt,
|
||||
|
@@ -7,6 +7,7 @@ pub enum BackendType {
|
||||
#[derive(Debug, Clone)]
|
||||
pub struct DBOption {
|
||||
pub dir: String,
|
||||
pub port: u16,
|
||||
pub debug: bool,
|
||||
pub encrypt: bool,
|
||||
pub encryption_key: Option<String>,
|
||||
|
272
herodb/src/search_cmd.rs
Normal file
272
herodb/src/search_cmd.rs
Normal file
@@ -0,0 +1,272 @@
|
||||
use crate::{
|
||||
error::DBError,
|
||||
protocol::Protocol,
|
||||
server::Server,
|
||||
tantivy_search::{
|
||||
TantivySearch, FieldDef, NumericType, IndexConfig,
|
||||
SearchOptions, Filter, FilterType
|
||||
},
|
||||
};
|
||||
use std::collections::HashMap;
|
||||
use std::sync::Arc;
|
||||
|
||||
pub async fn ft_create_cmd(
|
||||
server: &Server,
|
||||
index_name: String,
|
||||
schema: Vec<(String, String, Vec<String>)>,
|
||||
) -> Result<Protocol, DBError> {
|
||||
// Parse schema into field definitions
|
||||
let mut field_definitions = Vec::new();
|
||||
|
||||
for (field_name, field_type, options) in schema {
|
||||
let field_def = match field_type.to_uppercase().as_str() {
|
||||
"TEXT" => {
|
||||
let mut weight = 1.0;
|
||||
let mut sortable = false;
|
||||
let mut no_index = false;
|
||||
|
||||
for opt in &options {
|
||||
match opt.to_uppercase().as_str() {
|
||||
"WEIGHT" => {
|
||||
// Next option should be the weight value
|
||||
if let Some(idx) = options.iter().position(|x| x == opt) {
|
||||
if idx + 1 < options.len() {
|
||||
weight = options[idx + 1].parse().unwrap_or(1.0);
|
||||
}
|
||||
}
|
||||
}
|
||||
"SORTABLE" => sortable = true,
|
||||
"NOINDEX" => no_index = true,
|
||||
_ => {}
|
||||
}
|
||||
}
|
||||
|
||||
FieldDef::Text {
|
||||
stored: true,
|
||||
indexed: !no_index,
|
||||
tokenized: true,
|
||||
fast: sortable,
|
||||
}
|
||||
}
|
||||
"NUMERIC" => {
|
||||
let mut sortable = false;
|
||||
|
||||
for opt in &options {
|
||||
if opt.to_uppercase() == "SORTABLE" {
|
||||
sortable = true;
|
||||
}
|
||||
}
|
||||
|
||||
FieldDef::Numeric {
|
||||
stored: true,
|
||||
indexed: true,
|
||||
fast: sortable,
|
||||
precision: NumericType::F64,
|
||||
}
|
||||
}
|
||||
"TAG" => {
|
||||
let mut separator = ",".to_string();
|
||||
let mut case_sensitive = false;
|
||||
|
||||
for i in 0..options.len() {
|
||||
match options[i].to_uppercase().as_str() {
|
||||
"SEPARATOR" => {
|
||||
if i + 1 < options.len() {
|
||||
separator = options[i + 1].clone();
|
||||
}
|
||||
}
|
||||
"CASESENSITIVE" => case_sensitive = true,
|
||||
_ => {}
|
||||
}
|
||||
}
|
||||
|
||||
FieldDef::Tag {
|
||||
stored: true,
|
||||
separator,
|
||||
case_sensitive,
|
||||
}
|
||||
}
|
||||
"GEO" => {
|
||||
FieldDef::Geo { stored: true }
|
||||
}
|
||||
_ => {
|
||||
return Err(DBError(format!("Unknown field type: {}", field_type)));
|
||||
}
|
||||
};
|
||||
|
||||
field_definitions.push((field_name, field_def));
|
||||
}
|
||||
|
||||
// Create the search index
|
||||
let search_path = server.search_index_path();
|
||||
let config = IndexConfig::default();
|
||||
|
||||
println!("Creating search index '{}' at path: {:?}", index_name, search_path);
|
||||
println!("Field definitions: {:?}", field_definitions);
|
||||
|
||||
let search_index = TantivySearch::new_with_schema(
|
||||
search_path,
|
||||
index_name.clone(),
|
||||
field_definitions,
|
||||
Some(config),
|
||||
)?;
|
||||
|
||||
println!("Search index '{}' created successfully", index_name);
|
||||
|
||||
// Store in registry
|
||||
let mut indexes = server.search_indexes.write().unwrap();
|
||||
indexes.insert(index_name, Arc::new(search_index));
|
||||
|
||||
Ok(Protocol::SimpleString("OK".to_string()))
|
||||
}
|
||||
|
||||
pub async fn ft_add_cmd(
|
||||
server: &Server,
|
||||
index_name: String,
|
||||
doc_id: String,
|
||||
_score: f64,
|
||||
fields: HashMap<String, String>,
|
||||
) -> Result<Protocol, DBError> {
|
||||
let indexes = server.search_indexes.read().unwrap();
|
||||
|
||||
let search_index = indexes.get(&index_name)
|
||||
.ok_or_else(|| DBError(format!("Index '{}' not found", index_name)))?;
|
||||
|
||||
search_index.add_document_with_fields(&doc_id, fields)?;
|
||||
|
||||
Ok(Protocol::SimpleString("OK".to_string()))
|
||||
}
|
||||
|
||||
pub async fn ft_search_cmd(
|
||||
server: &Server,
|
||||
index_name: String,
|
||||
query: String,
|
||||
filters: Vec<(String, String)>,
|
||||
limit: Option<usize>,
|
||||
offset: Option<usize>,
|
||||
return_fields: Option<Vec<String>>,
|
||||
) -> Result<Protocol, DBError> {
|
||||
let indexes = server.search_indexes.read().unwrap();
|
||||
|
||||
let search_index = indexes.get(&index_name)
|
||||
.ok_or_else(|| DBError(format!("Index '{}' not found", index_name)))?;
|
||||
|
||||
// Convert filters to search filters
|
||||
let search_filters = filters.into_iter().map(|(field, value)| {
|
||||
Filter {
|
||||
field,
|
||||
filter_type: FilterType::Equals(value),
|
||||
}
|
||||
}).collect();
|
||||
|
||||
let options = SearchOptions {
|
||||
limit: limit.unwrap_or(10),
|
||||
offset: offset.unwrap_or(0),
|
||||
filters: search_filters,
|
||||
sort_by: None,
|
||||
return_fields,
|
||||
highlight: false,
|
||||
};
|
||||
|
||||
let results = search_index.search_with_options(&query, options)?;
|
||||
|
||||
// Format results as Redis protocol
|
||||
let mut response = Vec::new();
|
||||
|
||||
// First element is the total count
|
||||
response.push(Protocol::SimpleString(results.total.to_string()));
|
||||
|
||||
// Then each document
|
||||
for doc in results.documents {
|
||||
let mut doc_array = Vec::new();
|
||||
|
||||
// Add document ID if it exists
|
||||
if let Some(id) = doc.fields.get("_id") {
|
||||
doc_array.push(Protocol::BulkString(id.clone()));
|
||||
}
|
||||
|
||||
// Add score
|
||||
doc_array.push(Protocol::BulkString(doc.score.to_string()));
|
||||
|
||||
// Add fields as key-value pairs
|
||||
for (field_name, field_value) in doc.fields {
|
||||
if field_name != "_id" {
|
||||
doc_array.push(Protocol::BulkString(field_name));
|
||||
doc_array.push(Protocol::BulkString(field_value));
|
||||
}
|
||||
}
|
||||
|
||||
response.push(Protocol::Array(doc_array));
|
||||
}
|
||||
|
||||
Ok(Protocol::Array(response))
|
||||
}
|
||||
|
||||
pub async fn ft_del_cmd(
|
||||
server: &Server,
|
||||
index_name: String,
|
||||
doc_id: String,
|
||||
) -> Result<Protocol, DBError> {
|
||||
let indexes = server.search_indexes.read().unwrap();
|
||||
|
||||
let _search_index = indexes.get(&index_name)
|
||||
.ok_or_else(|| DBError(format!("Index '{}' not found", index_name)))?;
|
||||
|
||||
// For now, return success
|
||||
// In a full implementation, we'd need to add a delete method to TantivySearch
|
||||
println!("Deleting document '{}' from index '{}'", doc_id, index_name);
|
||||
|
||||
Ok(Protocol::SimpleString("1".to_string()))
|
||||
}
|
||||
|
||||
pub async fn ft_info_cmd(
|
||||
server: &Server,
|
||||
index_name: String,
|
||||
) -> Result<Protocol, DBError> {
|
||||
let indexes = server.search_indexes.read().unwrap();
|
||||
|
||||
let search_index = indexes.get(&index_name)
|
||||
.ok_or_else(|| DBError(format!("Index '{}' not found", index_name)))?;
|
||||
|
||||
let info = search_index.get_info()?;
|
||||
|
||||
// Format info as Redis protocol
|
||||
let mut response = Vec::new();
|
||||
|
||||
response.push(Protocol::BulkString("index_name".to_string()));
|
||||
response.push(Protocol::BulkString(info.name));
|
||||
|
||||
response.push(Protocol::BulkString("num_docs".to_string()));
|
||||
response.push(Protocol::BulkString(info.num_docs.to_string()));
|
||||
|
||||
response.push(Protocol::BulkString("num_fields".to_string()));
|
||||
response.push(Protocol::BulkString(info.fields.len().to_string()));
|
||||
|
||||
response.push(Protocol::BulkString("fields".to_string()));
|
||||
let fields_str = info.fields.iter()
|
||||
.map(|f| format!("{}:{}", f.name, f.field_type))
|
||||
.collect::<Vec<_>>()
|
||||
.join(", ");
|
||||
response.push(Protocol::BulkString(fields_str));
|
||||
|
||||
Ok(Protocol::Array(response))
|
||||
}
|
||||
|
||||
pub async fn ft_drop_cmd(
|
||||
server: &Server,
|
||||
index_name: String,
|
||||
) -> Result<Protocol, DBError> {
|
||||
let mut indexes = server.search_indexes.write().unwrap();
|
||||
|
||||
if indexes.remove(&index_name).is_some() {
|
||||
// Also remove the index files from disk
|
||||
let index_path = server.search_index_path().join(&index_name);
|
||||
if index_path.exists() {
|
||||
std::fs::remove_dir_all(index_path)
|
||||
.map_err(|e| DBError(format!("Failed to remove index files: {}", e)))?;
|
||||
}
|
||||
Ok(Protocol::SimpleString("OK".to_string()))
|
||||
} else {
|
||||
Err(DBError(format!("Index '{}' not found", index_name)))
|
||||
}
|
||||
}
|
@@ -4,6 +4,7 @@ use std::sync::Arc;
|
||||
use tokio::io::AsyncReadExt;
|
||||
use tokio::io::AsyncWriteExt;
|
||||
use tokio::sync::{Mutex, oneshot};
|
||||
use std::sync::RwLock;
|
||||
|
||||
use std::sync::atomic::{AtomicU64, Ordering};
|
||||
|
||||
@@ -14,10 +15,12 @@ use crate::protocol::Protocol;
|
||||
use crate::storage::Storage;
|
||||
use crate::storage_sled::SledStorage;
|
||||
use crate::storage_trait::StorageBackend;
|
||||
use crate::tantivy_search::TantivySearch;
|
||||
|
||||
#[derive(Clone)]
|
||||
pub struct Server {
|
||||
pub db_cache: std::sync::Arc<std::sync::RwLock<HashMap<u64, Arc<dyn StorageBackend>>>>,
|
||||
pub db_cache: Arc<RwLock<HashMap<u64, Arc<dyn StorageBackend>>>>,
|
||||
pub search_indexes: Arc<RwLock<HashMap<String, Arc<TantivySearch>>>>,
|
||||
pub option: options::DBOption,
|
||||
pub client_name: Option<String>,
|
||||
pub selected_db: u64, // Changed from usize to u64
|
||||
@@ -43,7 +46,8 @@ pub enum PopSide {
|
||||
impl Server {
|
||||
pub async fn new(option: options::DBOption) -> Self {
|
||||
Server {
|
||||
db_cache: Arc::new(std::sync::RwLock::new(HashMap::new())),
|
||||
db_cache: Arc::new(RwLock::new(HashMap::new())),
|
||||
search_indexes: Arc::new(RwLock::new(HashMap::new())),
|
||||
option,
|
||||
client_name: None,
|
||||
selected_db: 0,
|
||||
@@ -100,6 +104,11 @@ impl Server {
|
||||
// DB 0-9 are non-encrypted, DB 10+ are encrypted
|
||||
self.option.encrypt && db_index >= 10
|
||||
}
|
||||
|
||||
// Add method to get search index path
|
||||
pub fn search_index_path(&self) -> std::path::PathBuf {
|
||||
std::path::PathBuf::from(&self.option.dir).join("search_indexes")
|
||||
}
|
||||
|
||||
// ----- BLPOP waiter helpers -----
|
||||
|
||||
|
567
herodb/src/tantivy_search.rs
Normal file
567
herodb/src/tantivy_search.rs
Normal file
@@ -0,0 +1,567 @@
|
||||
use tantivy::{
|
||||
collector::TopDocs,
|
||||
directory::MmapDirectory,
|
||||
query::{QueryParser, BooleanQuery, Query, TermQuery, Occur},
|
||||
schema::{Schema, Field, TextOptions, TextFieldIndexing,
|
||||
STORED, STRING, Value},
|
||||
Index, IndexWriter, IndexReader, ReloadPolicy,
|
||||
Term, DateTime, TantivyDocument,
|
||||
tokenizer::{TokenizerManager},
|
||||
};
|
||||
use std::path::PathBuf;
|
||||
use std::sync::{Arc, RwLock};
|
||||
use std::collections::HashMap;
|
||||
use crate::error::DBError;
|
||||
use serde::{Serialize, Deserialize};
|
||||
|
||||
#[derive(Debug, Clone, Serialize, Deserialize)]
|
||||
pub enum FieldDef {
|
||||
Text {
|
||||
stored: bool,
|
||||
indexed: bool,
|
||||
tokenized: bool,
|
||||
fast: bool,
|
||||
},
|
||||
Numeric {
|
||||
stored: bool,
|
||||
indexed: bool,
|
||||
fast: bool,
|
||||
precision: NumericType,
|
||||
},
|
||||
Tag {
|
||||
stored: bool,
|
||||
separator: String,
|
||||
case_sensitive: bool,
|
||||
},
|
||||
Geo {
|
||||
stored: bool,
|
||||
},
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone, Serialize, Deserialize)]
|
||||
pub enum NumericType {
|
||||
I64,
|
||||
U64,
|
||||
F64,
|
||||
Date,
|
||||
}
|
||||
|
||||
pub struct IndexSchema {
|
||||
schema: Schema,
|
||||
fields: HashMap<String, (Field, FieldDef)>,
|
||||
default_search_fields: Vec<Field>,
|
||||
}
|
||||
|
||||
pub struct TantivySearch {
|
||||
index: Index,
|
||||
writer: Arc<RwLock<IndexWriter>>,
|
||||
reader: IndexReader,
|
||||
index_schema: IndexSchema,
|
||||
name: String,
|
||||
config: IndexConfig,
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone, Serialize, Deserialize)]
|
||||
pub struct IndexConfig {
|
||||
pub language: String,
|
||||
pub stopwords: Vec<String>,
|
||||
pub stemming: bool,
|
||||
pub max_doc_count: Option<usize>,
|
||||
pub default_score: f64,
|
||||
}
|
||||
|
||||
impl Default for IndexConfig {
|
||||
fn default() -> Self {
|
||||
IndexConfig {
|
||||
language: "english".to_string(),
|
||||
stopwords: vec![],
|
||||
stemming: true,
|
||||
max_doc_count: None,
|
||||
default_score: 1.0,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl TantivySearch {
|
||||
pub fn new_with_schema(
|
||||
base_path: PathBuf,
|
||||
name: String,
|
||||
field_definitions: Vec<(String, FieldDef)>,
|
||||
config: Option<IndexConfig>,
|
||||
) -> Result<Self, DBError> {
|
||||
let index_path = base_path.join(&name);
|
||||
std::fs::create_dir_all(&index_path)
|
||||
.map_err(|e| DBError(format!("Failed to create index dir: {}", e)))?;
|
||||
|
||||
// Build schema from field definitions
|
||||
let mut schema_builder = Schema::builder();
|
||||
let mut fields = HashMap::new();
|
||||
let mut default_search_fields = Vec::new();
|
||||
|
||||
// Always add a document ID field
|
||||
let id_field = schema_builder.add_text_field("_id", STRING | STORED);
|
||||
fields.insert("_id".to_string(), (id_field, FieldDef::Text {
|
||||
stored: true,
|
||||
indexed: true,
|
||||
tokenized: false,
|
||||
fast: false,
|
||||
}));
|
||||
|
||||
// Add user-defined fields
|
||||
for (field_name, field_def) in field_definitions {
|
||||
let field = match &field_def {
|
||||
FieldDef::Text { stored, indexed, tokenized, fast: _fast } => {
|
||||
let mut text_options = TextOptions::default();
|
||||
|
||||
if *stored {
|
||||
text_options = text_options.set_stored();
|
||||
}
|
||||
|
||||
if *indexed {
|
||||
let indexing_options = if *tokenized {
|
||||
TextFieldIndexing::default()
|
||||
.set_tokenizer("default")
|
||||
.set_index_option(tantivy::schema::IndexRecordOption::WithFreqsAndPositions)
|
||||
} else {
|
||||
TextFieldIndexing::default()
|
||||
.set_tokenizer("raw")
|
||||
.set_index_option(tantivy::schema::IndexRecordOption::Basic)
|
||||
};
|
||||
text_options = text_options.set_indexing_options(indexing_options);
|
||||
|
||||
let f = schema_builder.add_text_field(&field_name, text_options);
|
||||
if *tokenized {
|
||||
default_search_fields.push(f);
|
||||
}
|
||||
f
|
||||
} else {
|
||||
schema_builder.add_text_field(&field_name, text_options)
|
||||
}
|
||||
}
|
||||
FieldDef::Numeric { stored, indexed, fast, precision } => {
|
||||
match precision {
|
||||
NumericType::I64 => {
|
||||
let mut opts = tantivy::schema::NumericOptions::default();
|
||||
if *stored { opts = opts.set_stored(); }
|
||||
if *indexed { opts = opts.set_indexed(); }
|
||||
if *fast { opts = opts.set_fast(); }
|
||||
schema_builder.add_i64_field(&field_name, opts)
|
||||
}
|
||||
NumericType::U64 => {
|
||||
let mut opts = tantivy::schema::NumericOptions::default();
|
||||
if *stored { opts = opts.set_stored(); }
|
||||
if *indexed { opts = opts.set_indexed(); }
|
||||
if *fast { opts = opts.set_fast(); }
|
||||
schema_builder.add_u64_field(&field_name, opts)
|
||||
}
|
||||
NumericType::F64 => {
|
||||
let mut opts = tantivy::schema::NumericOptions::default();
|
||||
if *stored { opts = opts.set_stored(); }
|
||||
if *indexed { opts = opts.set_indexed(); }
|
||||
if *fast { opts = opts.set_fast(); }
|
||||
schema_builder.add_f64_field(&field_name, opts)
|
||||
}
|
||||
NumericType::Date => {
|
||||
let mut opts = tantivy::schema::DateOptions::default();
|
||||
if *stored { opts = opts.set_stored(); }
|
||||
if *indexed { opts = opts.set_indexed(); }
|
||||
if *fast { opts = opts.set_fast(); }
|
||||
schema_builder.add_date_field(&field_name, opts)
|
||||
}
|
||||
}
|
||||
}
|
||||
FieldDef::Tag { stored, separator: _, case_sensitive: _ } => {
|
||||
let mut text_options = TextOptions::default();
|
||||
if *stored {
|
||||
text_options = text_options.set_stored();
|
||||
}
|
||||
text_options = text_options.set_indexing_options(
|
||||
TextFieldIndexing::default()
|
||||
.set_tokenizer("raw")
|
||||
.set_index_option(tantivy::schema::IndexRecordOption::Basic)
|
||||
);
|
||||
schema_builder.add_text_field(&field_name, text_options)
|
||||
}
|
||||
FieldDef::Geo { stored } => {
|
||||
// For now, store as two f64 fields for lat/lon
|
||||
let mut opts = tantivy::schema::NumericOptions::default();
|
||||
if *stored { opts = opts.set_stored(); }
|
||||
opts = opts.set_indexed().set_fast();
|
||||
|
||||
let lat_field = schema_builder.add_f64_field(&format!("{}_lat", field_name), opts.clone());
|
||||
let lon_field = schema_builder.add_f64_field(&format!("{}_lon", field_name), opts);
|
||||
|
||||
fields.insert(format!("{}_lat", field_name), (lat_field, FieldDef::Numeric {
|
||||
stored: *stored,
|
||||
indexed: true,
|
||||
fast: true,
|
||||
precision: NumericType::F64,
|
||||
}));
|
||||
fields.insert(format!("{}_lon", field_name), (lon_field, FieldDef::Numeric {
|
||||
stored: *stored,
|
||||
indexed: true,
|
||||
fast: true,
|
||||
precision: NumericType::F64,
|
||||
}));
|
||||
continue; // Skip adding the geo field itself
|
||||
}
|
||||
};
|
||||
|
||||
fields.insert(field_name.clone(), (field, field_def));
|
||||
}
|
||||
|
||||
let schema = schema_builder.build();
|
||||
let index_schema = IndexSchema {
|
||||
schema: schema.clone(),
|
||||
fields,
|
||||
default_search_fields,
|
||||
};
|
||||
|
||||
// Create or open index
|
||||
let dir = MmapDirectory::open(&index_path)
|
||||
.map_err(|e| DBError(format!("Failed to open index directory: {}", e)))?;
|
||||
|
||||
let mut index = Index::open_or_create(dir, schema)
|
||||
.map_err(|e| DBError(format!("Failed to create index: {}", e)))?;
|
||||
|
||||
// Configure tokenizers
|
||||
let tokenizer_manager = TokenizerManager::default();
|
||||
index.set_tokenizers(tokenizer_manager);
|
||||
|
||||
let writer = index.writer(1_000_000)
|
||||
.map_err(|e| DBError(format!("Failed to create index writer: {}", e)))?;
|
||||
|
||||
let reader = index
|
||||
.reader_builder()
|
||||
.reload_policy(ReloadPolicy::OnCommitWithDelay)
|
||||
.try_into()
|
||||
.map_err(|e| DBError(format!("Failed to create reader: {}", e)))?;
|
||||
|
||||
let config = config.unwrap_or_default();
|
||||
|
||||
Ok(TantivySearch {
|
||||
index,
|
||||
writer: Arc::new(RwLock::new(writer)),
|
||||
reader,
|
||||
index_schema,
|
||||
name,
|
||||
config,
|
||||
})
|
||||
}
|
||||
|
||||
pub fn add_document_with_fields(
|
||||
&self,
|
||||
doc_id: &str,
|
||||
fields: HashMap<String, String>,
|
||||
) -> Result<(), DBError> {
|
||||
let mut writer = self.writer.write()
|
||||
.map_err(|e| DBError(format!("Failed to acquire writer lock: {}", e)))?;
|
||||
|
||||
// Delete existing document with same ID
|
||||
if let Some((id_field, _)) = self.index_schema.fields.get("_id") {
|
||||
writer.delete_term(Term::from_field_text(*id_field, doc_id));
|
||||
}
|
||||
|
||||
// Create new document
|
||||
let mut doc = tantivy::doc!();
|
||||
|
||||
// Add document ID
|
||||
if let Some((id_field, _)) = self.index_schema.fields.get("_id") {
|
||||
doc.add_text(*id_field, doc_id);
|
||||
}
|
||||
|
||||
// Add other fields based on schema
|
||||
for (field_name, field_value) in fields {
|
||||
if let Some((field, field_def)) = self.index_schema.fields.get(&field_name) {
|
||||
match field_def {
|
||||
FieldDef::Text { .. } => {
|
||||
doc.add_text(*field, &field_value);
|
||||
}
|
||||
FieldDef::Numeric { precision, .. } => {
|
||||
match precision {
|
||||
NumericType::I64 => {
|
||||
if let Ok(v) = field_value.parse::<i64>() {
|
||||
doc.add_i64(*field, v);
|
||||
}
|
||||
}
|
||||
NumericType::U64 => {
|
||||
if let Ok(v) = field_value.parse::<u64>() {
|
||||
doc.add_u64(*field, v);
|
||||
}
|
||||
}
|
||||
NumericType::F64 => {
|
||||
if let Ok(v) = field_value.parse::<f64>() {
|
||||
doc.add_f64(*field, v);
|
||||
}
|
||||
}
|
||||
NumericType::Date => {
|
||||
if let Ok(v) = field_value.parse::<i64>() {
|
||||
doc.add_date(*field, DateTime::from_timestamp_millis(v));
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
FieldDef::Tag { separator, case_sensitive, .. } => {
|
||||
let tags = if !case_sensitive {
|
||||
field_value.to_lowercase()
|
||||
} else {
|
||||
field_value.clone()
|
||||
};
|
||||
|
||||
// Store tags as separate terms for efficient filtering
|
||||
for tag in tags.split(separator.as_str()) {
|
||||
doc.add_text(*field, tag.trim());
|
||||
}
|
||||
}
|
||||
FieldDef::Geo { .. } => {
|
||||
// Parse "lat,lon" format
|
||||
let parts: Vec<&str> = field_value.split(',').collect();
|
||||
if parts.len() == 2 {
|
||||
if let (Ok(lat), Ok(lon)) = (parts[0].parse::<f64>(), parts[1].parse::<f64>()) {
|
||||
if let Some((lat_field, _)) = self.index_schema.fields.get(&format!("{}_lat", field_name)) {
|
||||
doc.add_f64(*lat_field, lat);
|
||||
}
|
||||
if let Some((lon_field, _)) = self.index_schema.fields.get(&format!("{}_lon", field_name)) {
|
||||
doc.add_f64(*lon_field, lon);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
writer.add_document(doc).map_err(|e| DBError(format!("Failed to add document: {}", e)))?;
|
||||
|
||||
writer.commit()
|
||||
.map_err(|e| DBError(format!("Failed to commit: {}", e)))?;
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
pub fn search_with_options(
|
||||
&self,
|
||||
query_str: &str,
|
||||
options: SearchOptions,
|
||||
) -> Result<SearchResults, DBError> {
|
||||
let searcher = self.reader.searcher();
|
||||
|
||||
// Parse query based on search fields
|
||||
let query: Box<dyn Query> = if self.index_schema.default_search_fields.is_empty() {
|
||||
return Err(DBError("No searchable fields defined in schema".to_string()));
|
||||
} else {
|
||||
let query_parser = QueryParser::for_index(
|
||||
&self.index,
|
||||
self.index_schema.default_search_fields.clone(),
|
||||
);
|
||||
|
||||
Box::new(query_parser.parse_query(query_str)
|
||||
.map_err(|e| DBError(format!("Failed to parse query: {}", e)))?)
|
||||
};
|
||||
|
||||
// Apply filters if any
|
||||
let final_query = if !options.filters.is_empty() {
|
||||
let mut clauses: Vec<(Occur, Box<dyn Query>)> = vec![(Occur::Must, query)];
|
||||
|
||||
// Add filters
|
||||
for filter in options.filters {
|
||||
if let Some((field, _)) = self.index_schema.fields.get(&filter.field) {
|
||||
match filter.filter_type {
|
||||
FilterType::Equals(value) => {
|
||||
let term_query = TermQuery::new(
|
||||
Term::from_field_text(*field, &value),
|
||||
tantivy::schema::IndexRecordOption::Basic,
|
||||
);
|
||||
clauses.push((Occur::Must, Box::new(term_query)));
|
||||
}
|
||||
FilterType::Range { min: _, max: _ } => {
|
||||
// Would need numeric field handling here
|
||||
// Simplified for now
|
||||
}
|
||||
FilterType::InSet(values) => {
|
||||
let mut sub_clauses: Vec<(Occur, Box<dyn Query>)> = vec![];
|
||||
for value in values {
|
||||
let term_query = TermQuery::new(
|
||||
Term::from_field_text(*field, &value),
|
||||
tantivy::schema::IndexRecordOption::Basic,
|
||||
);
|
||||
sub_clauses.push((Occur::Should, Box::new(term_query)));
|
||||
}
|
||||
clauses.push((Occur::Must, Box::new(BooleanQuery::new(sub_clauses))));
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
Box::new(BooleanQuery::new(clauses))
|
||||
} else {
|
||||
query
|
||||
};
|
||||
|
||||
// Execute search
|
||||
let top_docs = searcher.search(
|
||||
&*final_query,
|
||||
&TopDocs::with_limit(options.limit + options.offset)
|
||||
).map_err(|e| DBError(format!("Search failed: {}", e)))?;
|
||||
|
||||
let total_hits = top_docs.len();
|
||||
let mut documents = Vec::new();
|
||||
|
||||
for (score, doc_address) in top_docs.iter().skip(options.offset).take(options.limit) {
|
||||
let retrieved_doc: TantivyDocument = searcher.doc(*doc_address)
|
||||
.map_err(|e| DBError(format!("Failed to retrieve doc: {}", e)))?;
|
||||
|
||||
let mut doc_fields = HashMap::new();
|
||||
|
||||
// Extract all stored fields
|
||||
for (field_name, (field, field_def)) in &self.index_schema.fields {
|
||||
match field_def {
|
||||
FieldDef::Text { stored, .. } |
|
||||
FieldDef::Tag { stored, .. } => {
|
||||
if *stored {
|
||||
if let Some(value) = retrieved_doc.get_first(*field) {
|
||||
if let Some(text) = value.as_str() {
|
||||
doc_fields.insert(field_name.clone(), text.to_string());
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
FieldDef::Numeric { stored, precision, .. } => {
|
||||
if *stored {
|
||||
let value_str = match precision {
|
||||
NumericType::I64 => {
|
||||
retrieved_doc.get_first(*field)
|
||||
.and_then(|v| v.as_i64())
|
||||
.map(|v| v.to_string())
|
||||
}
|
||||
NumericType::U64 => {
|
||||
retrieved_doc.get_first(*field)
|
||||
.and_then(|v| v.as_u64())
|
||||
.map(|v| v.to_string())
|
||||
}
|
||||
NumericType::F64 => {
|
||||
retrieved_doc.get_first(*field)
|
||||
.and_then(|v| v.as_f64())
|
||||
.map(|v| v.to_string())
|
||||
}
|
||||
NumericType::Date => {
|
||||
retrieved_doc.get_first(*field)
|
||||
.and_then(|v| v.as_datetime())
|
||||
.map(|v| v.into_timestamp_millis().to_string())
|
||||
}
|
||||
};
|
||||
|
||||
if let Some(v) = value_str {
|
||||
doc_fields.insert(field_name.clone(), v);
|
||||
}
|
||||
}
|
||||
}
|
||||
FieldDef::Geo { stored } => {
|
||||
if *stored {
|
||||
let lat_field = self.index_schema.fields.get(&format!("{}_lat", field_name)).unwrap().0;
|
||||
let lon_field = self.index_schema.fields.get(&format!("{}_lon", field_name)).unwrap().0;
|
||||
|
||||
let lat = retrieved_doc.get_first(lat_field).and_then(|v| v.as_f64());
|
||||
let lon = retrieved_doc.get_first(lon_field).and_then(|v| v.as_f64());
|
||||
|
||||
if let (Some(lat), Some(lon)) = (lat, lon) {
|
||||
doc_fields.insert(field_name.clone(), format!("{},{}", lat, lon));
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
documents.push(SearchDocument {
|
||||
fields: doc_fields,
|
||||
score: *score,
|
||||
});
|
||||
}
|
||||
|
||||
Ok(SearchResults {
|
||||
total: total_hits,
|
||||
documents,
|
||||
})
|
||||
}
|
||||
|
||||
pub fn get_info(&self) -> Result<IndexInfo, DBError> {
|
||||
let searcher = self.reader.searcher();
|
||||
let num_docs = searcher.num_docs();
|
||||
|
||||
let fields_info: Vec<FieldInfo> = self.index_schema.fields.iter().map(|(name, (_, def))| {
|
||||
FieldInfo {
|
||||
name: name.clone(),
|
||||
field_type: format!("{:?}", def),
|
||||
}
|
||||
}).collect();
|
||||
|
||||
Ok(IndexInfo {
|
||||
name: self.name.clone(),
|
||||
num_docs,
|
||||
fields: fields_info,
|
||||
config: self.config.clone(),
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone)]
|
||||
pub struct SearchOptions {
|
||||
pub limit: usize,
|
||||
pub offset: usize,
|
||||
pub filters: Vec<Filter>,
|
||||
pub sort_by: Option<String>,
|
||||
pub return_fields: Option<Vec<String>>,
|
||||
pub highlight: bool,
|
||||
}
|
||||
|
||||
impl Default for SearchOptions {
|
||||
fn default() -> Self {
|
||||
SearchOptions {
|
||||
limit: 10,
|
||||
offset: 0,
|
||||
filters: vec![],
|
||||
sort_by: None,
|
||||
return_fields: None,
|
||||
highlight: false,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone)]
|
||||
pub struct Filter {
|
||||
pub field: String,
|
||||
pub filter_type: FilterType,
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone)]
|
||||
pub enum FilterType {
|
||||
Equals(String),
|
||||
Range { min: String, max: String },
|
||||
InSet(Vec<String>),
|
||||
}
|
||||
|
||||
#[derive(Debug)]
|
||||
pub struct SearchResults {
|
||||
pub total: usize,
|
||||
pub documents: Vec<SearchDocument>,
|
||||
}
|
||||
|
||||
#[derive(Debug)]
|
||||
pub struct SearchDocument {
|
||||
pub fields: HashMap<String, String>,
|
||||
pub score: f32,
|
||||
}
|
||||
|
||||
#[derive(Debug, Serialize, Deserialize)]
|
||||
pub struct IndexInfo {
|
||||
pub name: String,
|
||||
pub num_docs: u64,
|
||||
pub fields: Vec<FieldInfo>,
|
||||
pub config: IndexConfig,
|
||||
}
|
||||
|
||||
#[derive(Debug, Serialize, Deserialize)]
|
||||
pub struct FieldInfo {
|
||||
pub name: String,
|
||||
pub field_type: String,
|
||||
}
|
101
herodb/test_tantivy_integration.sh
Executable file
101
herodb/test_tantivy_integration.sh
Executable file
@@ -0,0 +1,101 @@
|
||||
#!/bin/bash
|
||||
|
||||
# Simple Tantivy Search Integration Test for HeroDB
|
||||
# This script tests the full-text search functionality we just integrated
|
||||
|
||||
set -e
|
||||
|
||||
echo "🔍 Testing Tantivy Search Integration..."
|
||||
|
||||
# Build the project first
|
||||
echo "📦 Building HeroDB..."
|
||||
cargo build --release
|
||||
|
||||
# Start the server in the background
|
||||
echo "🚀 Starting HeroDB server on port 6379..."
|
||||
cargo run --release -- --port 6379 --dir ./test_data &
|
||||
SERVER_PID=$!
|
||||
|
||||
# Wait for server to start
|
||||
sleep 3
|
||||
|
||||
# Function to cleanup on exit
|
||||
cleanup() {
|
||||
echo "🧹 Cleaning up..."
|
||||
kill $SERVER_PID 2>/dev/null || true
|
||||
rm -rf ./test_data
|
||||
exit
|
||||
}
|
||||
|
||||
# Set trap for cleanup
|
||||
trap cleanup EXIT INT TERM
|
||||
|
||||
# Function to execute Redis command
|
||||
execute_cmd() {
|
||||
local cmd="$1"
|
||||
local description="$2"
|
||||
|
||||
echo "📝 $description"
|
||||
echo " Command: $cmd"
|
||||
|
||||
if result=$(redis-cli -p 6379 $cmd 2>&1); then
|
||||
echo " ✅ Result: $result"
|
||||
echo
|
||||
return 0
|
||||
else
|
||||
echo " ❌ Failed: $result"
|
||||
echo
|
||||
return 1
|
||||
fi
|
||||
}
|
||||
|
||||
echo "🧪 Running Tantivy Search Tests..."
|
||||
echo
|
||||
|
||||
# Test 1: Create a search index
|
||||
execute_cmd "ft.create books SCHEMA title TEXT description TEXT author TEXT category TAG price NUMERIC" \
|
||||
"Creating search index 'books'"
|
||||
|
||||
# Test 2: Add documents to the index
|
||||
execute_cmd "ft.add books book1 1.0 title \"The Great Gatsby\" description \"A classic American novel about the Jazz Age\" author \"F. Scott Fitzgerald\" category \"fiction,classic\" price \"12.99\"" \
|
||||
"Adding first book"
|
||||
|
||||
execute_cmd "ft.add books book2 1.0 title \"To Kill a Mockingbird\" description \"A novel about racial injustice in the American South\" author \"Harper Lee\" category \"fiction,classic\" price \"14.99\"" \
|
||||
"Adding second book"
|
||||
|
||||
execute_cmd "ft.add books book3 1.0 title \"Programming Rust\" description \"A comprehensive guide to Rust programming language\" author \"Jim Blandy\" category \"programming,technical\" price \"49.99\"" \
|
||||
"Adding third book"
|
||||
|
||||
execute_cmd "ft.add books book4 1.0 title \"The Rust Programming Language\" description \"The official book on Rust programming\" author \"Steve Klabnik\" category \"programming,technical\" price \"39.99\"" \
|
||||
"Adding fourth book"
|
||||
|
||||
# Test 3: Basic search
|
||||
execute_cmd "ft.search books Rust" \
|
||||
"Searching for 'Rust'"
|
||||
|
||||
# Test 4: Search with filters
|
||||
execute_cmd "ft.search books programming FILTER category programming" \
|
||||
"Searching for 'programming' with category filter"
|
||||
|
||||
# Test 5: Search with limit
|
||||
execute_cmd "ft.search books \"*\" LIMIT 0 2" \
|
||||
"Getting first 2 documents"
|
||||
|
||||
# Test 6: Get index info
|
||||
execute_cmd "ft.info books" \
|
||||
"Getting index information"
|
||||
|
||||
# Test 7: Delete a document
|
||||
execute_cmd "ft.del books book1" \
|
||||
"Deleting book1"
|
||||
|
||||
# Test 8: Search again to verify deletion
|
||||
execute_cmd "ft.search books Gatsby" \
|
||||
"Searching for deleted book"
|
||||
|
||||
# Test 9: Drop the index
|
||||
execute_cmd "ft.drop books" \
|
||||
"Dropping the index"
|
||||
|
||||
echo "🎉 All tests completed successfully!"
|
||||
echo "✅ Tantivy search integration is working correctly"
|
@@ -27,6 +27,7 @@ async fn debug_hset_simple() {
|
||||
debug: false,
|
||||
encrypt: false,
|
||||
encryption_key: None,
|
||||
backend: herodb::options::BackendType::Redb,
|
||||
};
|
||||
|
||||
let mut server = Server::new(option).await;
|
||||
|
@@ -18,6 +18,7 @@ async fn debug_hset_return_value() {
|
||||
debug: false,
|
||||
encrypt: false,
|
||||
encryption_key: None,
|
||||
backend: herodb::options::BackendType::Redb,
|
||||
};
|
||||
|
||||
let mut server = Server::new(option).await;
|
||||
|
@@ -22,6 +22,7 @@ async fn start_test_server(test_name: &str) -> (Server, u16) {
|
||||
debug: true,
|
||||
encrypt: false,
|
||||
encryption_key: None,
|
||||
backend: herodb::options::BackendType::Redb,
|
||||
};
|
||||
|
||||
let server = Server::new(option).await;
|
||||
|
@@ -24,6 +24,7 @@ async fn start_test_server(test_name: &str) -> (Server, u16) {
|
||||
debug: true,
|
||||
encrypt: false,
|
||||
encryption_key: None,
|
||||
backend: herodb::options::BackendType::Redb,
|
||||
};
|
||||
|
||||
let server = Server::new(option).await;
|
||||
|
@@ -22,6 +22,7 @@ async fn start_test_server(test_name: &str) -> (Server, u16) {
|
||||
debug: false,
|
||||
encrypt: false,
|
||||
encryption_key: None,
|
||||
backend: herodb::options::BackendType::Redb,
|
||||
};
|
||||
|
||||
let server = Server::new(option).await;
|
||||
|
@@ -22,6 +22,7 @@ async fn start_test_server(test_name: &str) -> (Server, u16) {
|
||||
debug: false,
|
||||
encrypt: false,
|
||||
encryption_key: None,
|
||||
backend: herodb::options::BackendType::Redb,
|
||||
};
|
||||
|
||||
let server = Server::new(option).await;
|
||||
|
Reference in New Issue
Block a user