lancedb_impl #15

Open
maximevanhees wants to merge 7 commits from lancedb_impl into main
17 changed files with 8205 additions and 102 deletions

4440
Cargo.lock generated

File diff suppressed because it is too large Load Diff

View File

@@ -27,6 +27,14 @@ x25519-dalek = "2"
base64 = "0.22"
jsonrpsee = { version = "0.26.0", features = ["http-client", "ws-client", "server", "macros"] }
tantivy = "0.25.0"
arrow-schema = "55.2.0"
arrow-array = "55.2.0"
lance = "0.37.0"
lance-index = "0.37.0"
arrow = "55.2.0"
lancedb = "0.22.1"
uuid = "1.18.1"
ureq = { version = "2.10.0", features = ["json", "tls"] }
[dev-dependencies]
redis = { version = "0.24", features = ["aio", "tokio-comp"] }

View File

@@ -47,18 +47,24 @@ HeroDB can be interacted with using any standard Redis client, such as `redis-cl
### Example with `redis-cli`
Connections start with no database selected. You must SELECT a database first.
- To work in the admin database (DB 0), authenticate with the admin secret:
```bash
redis-cli -p 6379 SELECT 0 KEY myadminsecret
redis-cli -p 6379 SET mykey "Hello from HeroDB!"
redis-cli -p 6379 GET mykey
# → "Hello from HeroDB!"
```
- To use a user database, first create one via the JSON-RPC API (see docs/rpc_examples.md), then select it:
```bash
# Suppose RPC created database id 1
redis-cli -p 6379 SELECT 1
redis-cli -p 6379 HSET user:1 name "Alice" age "30"
redis-cli -p 6379 HGET user:1 name
# → "Alice"
redis-cli -p 6379 SCAN 0 MATCH user:* COUNT 10
# → 1) "0"
# 2) 1) "user:1"
```
## Cryptography

View File

@@ -80,6 +80,7 @@ Keys in `DB 0` (internal layout, but useful to understand how things work):
- Requires the exact admin secret as the `KEY` argument to `SELECT 0`
- Permission is `ReadWrite` when the secret matches
Connections start with no database selected. Any command that requires storage (GET, SET, H*, L*, SCAN, etc.) will return an error until you issue a SELECT to choose a database. Admin DB 0 is never accessible without authenticating via SELECT 0 KEY <admin_secret>.
### How to select databases with optional `KEY`
- Public DB (no key required)

View File

@@ -126,7 +126,9 @@ redis-cli -p 6381 --pipe < dump.rdb
## Authentication and Database Selection
HeroDB uses an `Admin DB 0` to govern database existence, access and per-db encryption. Access control is enforced via `Admin DB 0` metadata. See the full model in `docs/admin.md`.
Connections start with no database selected. Any storage-backed command (GET, SET, H*, L*, SCAN, etc.) will return an error until you issue a SELECT to choose a database.
HeroDB uses an `Admin DB 0` to govern database existence, access and per-db encryption. Access control is enforced via `Admin DB 0` metadata. See the full model in (docs/admin.md:1).
Examples:
```bash
@@ -146,3 +148,9 @@ redis-cli -p $PORT SELECT 2 KEY my-db2-access-key
redis-cli -p $PORT SELECT 0 KEY my-admin-secret
# → OK
```
```bash
# Before selecting a DB, storage commands will fail
redis-cli -p $PORT GET key
# → -ERR No database selected. Use SELECT <id> [KEY <key>] first
```

444
docs/lance.md Normal file
View File

@@ -0,0 +1,444 @@
# Lance Vector Backend (RESP + JSON-RPC)
This document explains how to use HeroDBs Lance-backed vector store. It is text-first: users provide text, and HeroDB computes embeddings server-side (no manual vectors). It includes copy-pasteable RESP (redis-cli) and JSON-RPC examples for:
- Creating a Lance database
- Embedding provider configuration (OpenAI, Azure OpenAI, or deterministic test provider)
- Dataset lifecycle: CREATE, LIST, INFO, DROP
- Ingestion: STORE text (+ optional metadata)
- Search: QUERY with K, optional FILTER and RETURN
- Delete by id
- Index creation (currently a placeholder/no-op)
References:
- Implementation: [src/lance_store.rs](src/lance_store.rs), [src/cmd.rs](src/cmd.rs), [src/rpc.rs](src/rpc.rs), [src/server.rs](src/server.rs), [src/embedding.rs](src/embedding.rs)
Notes:
- Admin DB 0 cannot be Lance (or Tantivy). Only databases with id >= 1 can use Lance.
- Permissions:
- Read operations (SEARCH, LIST, INFO) require read permission.
- Mutating operations (CREATE, STORE, CREATEINDEX, DEL, DROP, EMBEDDING CONFIG SET) require readwrite permission.
- Backend gating:
- If a DB is Lance, only LANCE.* and basic control commands (PING, ECHO, SELECT, INFO, CLIENT, etc.) are permitted.
- If a DB is not Lance, LANCE.* commands return an error.
Storage layout and schema:
- Files live at: <base_dir>/lance/<db_id>/<dataset>.lance
- Records schema:
- id: Utf8 (non-null)
- vector: FixedSizeList<Float32, dim> (non-null)
- text: Utf8 (nullable)
- meta: Utf8 JSON (nullable)
- Search is an L2 KNN brute-force scan for now (lower score = better). Index creation is a no-op placeholder to be implemented later.
Prerequisites:
- Start HeroDB with RPC enabled (for management calls):
- See [docs/basics.md](./basics.md) for flags. Example:
```bash
./target/release/herodb --dir /tmp/herodb --admin-secret mysecret --port 6379 --enable-rpc
```
## 0) Create a Lance-backed database (JSON-RPC)
Use the management API to create a database with backend "Lance". DB 0 is reserved for admin and cannot be Lance.
Request:
```json
{
"jsonrpc": "2.0",
"id": 1,
"method": "herodb_createDatabase",
"params": [
"Lance",
{ "name": "vectors-db", "storage_path": null, "max_size": null, "redis_version": null },
null
]
}
```
- Response contains the allocated db_id (>= 1). Use that id below (replace 1 with your actual id).
Select the database over RESP:
```bash
redis-cli -p 6379 SELECT 1
# → OK
```
## 1) Configure embedding provider (server-side embeddings)
HeroDB embeds text internally at STORE/SEARCH time using a per-dataset EmbeddingConfig sidecar. Configure provider before creating a dataset to choose dimensions and provider.
Supported providers:
- openai (standard OpenAI or Azure OpenAI)
- testhash (deterministic, CI-friendly; no network)
Environment variables for OpenAI:
- Standard OpenAI: export OPENAI_API_KEY=sk-...
- Azure OpenAI: export AZURE_OPENAI_API_KEY=...
RESP examples:
```bash
# Standard OpenAI with default dims (model-dependent, e.g. 1536)
redis-cli -p 6379 LANCE.EMBEDDING CONFIG SET myset PROVIDER openai MODEL text-embedding-3-small
# OpenAI with reduced output dimension (e.g., 512) when supported
redis-cli -p 6379 LANCE.EMBEDDING CONFIG SET myset PROVIDER openai MODEL text-embedding-3-small PARAM dim 512
# Azure OpenAI (set env: AZURE_OPENAI_API_KEY)
redis-cli -p 6379 LANCE.EMBEDDING CONFIG SET myset PROVIDER openai MODEL text-embedding-3-small \
PARAM use_azure true \
PARAM azure_endpoint https://myresource.openai.azure.com \
PARAM azure_deployment my-embed-deploy \
PARAM azure_api_version 2024-02-15 \
PARAM dim 512
# Deterministic test provider (no network, stable vectors)
redis-cli -p 6379 LANCE.EMBEDDING CONFIG SET myset PROVIDER testhash MODEL any
```
Read config:
```bash
redis-cli -p 6379 LANCE.EMBEDDING CONFIG GET myset
# → JSON blob describing provider/model/params
```
JSON-RPC examples:
```json
{
"jsonrpc": "2.0",
"id": 2,
"method": "herodb_lanceSetEmbeddingConfig",
"params": [
1,
"myset",
"openai",
"text-embedding-3-small",
{ "dim": "512" }
]
}
```
```json
{
"jsonrpc": "2.0",
"id": 3,
"method": "herodb_lanceGetEmbeddingConfig",
"params": [1, "myset"]
}
```
## 2) Create a dataset
Choose a dimension that matches your embedding configuration. For OpenAI text-embedding-3-small without dimension override, typical dimension is 1536; when `dim` is set (e.g., 512), use that. The current API requires an explicit DIM.
RESP:
```bash
redis-cli -p 6379 LANCE.CREATE myset DIM 512
# → OK
```
JSON-RPC:
```json
{
"jsonrpc": "2.0",
"id": 4,
"method": "herodb_lanceCreate",
"params": [1, "myset", 512]
}
```
## 3) Store text documents (server-side embedding)
Provide your id, the text to embed, and optional META fields. The server computes the embedding using the configured provider and stores id/vector/text/meta in the Lance dataset. Upserts by id are supported via delete-then-append semantics.
RESP:
```bash
redis-cli -p 6379 LANCE.STORE myset ID doc-1 TEXT "Hello vector world" META title "Hello" category "demo"
# → OK
```
JSON-RPC:
```json
{
"jsonrpc": "2.0",
"id": 5,
"method": "herodb_lanceStoreText",
"params": [
1,
"myset",
"doc-1",
"Hello vector world",
{ "title": "Hello", "category": "demo" }
]
}
```
## 4) Search with a text query
Provide a query string; the server embeds it and performs KNN search. Optional: FILTER expression and RETURN subset of fields.
RESP:
```bash
# K nearest neighbors for the query text
redis-cli -p 6379 LANCE.SEARCH myset K 5 QUERY "greetings to vectors"
# → Array of hits: [id, score, [k,v, ...]] pairs, lower score = closer
# With a filter on meta fields and return only title
redis-cli -p 6379 LANCE.SEARCH myset K 3 QUERY "greetings to vectors" FILTER "category = 'demo'" RETURN 1 title
```
JSON-RPC:
```json
{
"jsonrpc": "2.0",
"id": 6,
"method": "herodb_lanceSearchText",
"params": [1, "myset", "greetings to vectors", 5, null, null]
}
```
With filter and selected fields:
```json
{
"jsonrpc": "2.0",
"id": 7,
"method": "herodb_lanceSearchText",
"params": [1, "myset", "greetings to vectors", 3, "category = 'demo'", ["title"]]
}
```
Response shape:
- RESP over redis-cli: an array of hits [id, score, [k, v, ...]].
- JSON-RPC returns an object containing the RESP-encoded wire format string or a structured result depending on implementation. See [src/rpc.rs](src/rpc.rs) for details.
## 5) Create an index (placeholder)
Index creation currently returns OK but is a no-op. It will integrate Lance vector indices in a future update.
RESP:
```bash
redis-cli -p 6379 LANCE.CREATEINDEX myset TYPE "ivf_pq" PARAM nlist 100 PARAM pq_m 16
# → OK (no-op for now)
```
JSON-RPC:
```json
{
"jsonrpc": "2.0",
"id": 8,
"method": "herodb_lanceCreateIndex",
"params": [1, "myset", "ivf_pq", { "nlist": "100", "pq_m": "16" }]
}
```
## 6) Inspect datasets
RESP:
```bash
# List datasets in current Lance DB
redis-cli -p 6379 LANCE.LIST
# Get dataset info
redis-cli -p 6379 LANCE.INFO myset
```
JSON-RPC:
```json
{
"jsonrpc": "2.0",
"id": 9,
"method": "herodb_lanceList",
"params": [1]
}
```
```json
{
"jsonrpc": "2.0",
"id": 10,
"method": "herodb_lanceInfo",
"params": [1, "myset"]
}
```
## 7) Delete and drop
RESP:
```bash
# Delete by id
redis-cli -p 6379 LANCE.DEL myset doc-1
# → OK
# Drop the entire dataset
redis-cli -p 6379 LANCE.DROP myset
# → OK
```
JSON-RPC:
```json
{
"jsonrpc": "2.0",
"id": 11,
"method": "herodb_lanceDel",
"params": [1, "myset", "doc-1"]
}
```
```json
{
"jsonrpc": "2.0",
"id": 12,
"method": "herodb_lanceDrop",
"params": [1, "myset"]
}
```
## 8) End-to-end example (RESP)
```bash
# 1. Select Lance DB (assume db_id=1 created via RPC)
redis-cli -p 6379 SELECT 1
# 2. Configure embedding provider (OpenAI small model at 512 dims)
redis-cli -p 6379 LANCE.EMBEDDING CONFIG SET myset PROVIDER openai MODEL text-embedding-3-small PARAM dim 512
# 3. Create dataset
redis-cli -p 6379 LANCE.CREATE myset DIM 512
# 4. Store documents
redis-cli -p 6379 LANCE.STORE myset ID doc-1 TEXT "The quick brown fox jumps over the lazy dog" META title "Fox" category "animal"
redis-cli -p 6379 LANCE.STORE myset ID doc-2 TEXT "A fast auburn fox vaulted a sleepy canine" META title "Fox paraphrase" category "animal"
# 5. Search
redis-cli -p 6379 LANCE.SEARCH myset K 2 QUERY "quick brown fox" RETURN 1 title
# 6. Dataset info and listing
redis-cli -p 6379 LANCE.INFO myset
redis-cli -p 6379 LANCE.LIST
# 7. Delete and drop
redis-cli -p 6379 LANCE.DEL myset doc-2
redis-cli -p 6379 LANCE.DROP myset
```
## 9) End-to-end example (JSON-RPC)
Assume RPC server on port 8080. Replace ids and ports as needed.
1) Create Lance DB:
```json
{
"jsonrpc": "2.0",
"id": 100,
"method": "herodb_createDatabase",
"params": ["Lance", { "name": "vectors-db", "storage_path": null, "max_size": null, "redis_version": null }, null]
}
```
2) Set embedding config:
```json
{
"jsonrpc": "2.0",
"id": 101,
"method": "herodb_lanceSetEmbeddingConfig",
"params": [1, "myset", "openai", "text-embedding-3-small", { "dim": "512" }]
}
```
3) Create dataset:
```json
{
"jsonrpc": "2.0",
"id": 102,
"method": "herodb_lanceCreate",
"params": [1, "myset", 512]
}
```
4) Store text:
```json
{
"jsonrpc": "2.0",
"id": 103,
"method": "herodb_lanceStoreText",
"params": [1, "myset", "doc-1", "The quick brown fox jumps over the lazy dog", { "title": "Fox", "category": "animal" }]
}
```
5) Search text:
```json
{
"jsonrpc": "2.0",
"id": 104,
"method": "herodb_lanceSearchText",
"params": [1, "myset", "quick brown fox", 2, null, ["title"]]
}
```
6) Info/list:
```json
{
"jsonrpc": "2.0",
"id": 105,
"method": "herodb_lanceInfo",
"params": [1, "myset"]
}
```
```json
{
"jsonrpc": "2.0",
"id": 106,
"method": "herodb_lanceList",
"params": [1]
}
```
7) Delete/drop:
```json
{
"jsonrpc": "2.0",
"id": 107,
"method": "herodb_lanceDel",
"params": [1, "myset", "doc-1"]
}
```
```json
{
"jsonrpc": "2.0",
"id": 108,
"method": "herodb_lanceDrop",
"params": [1, "myset"]
}
```
## 10) Operational notes and troubleshooting
- If using OpenAI and you see “missing API key env”, set:
- Standard: `export OPENAI_API_KEY=sk-...`
- Azure: `export AZURE_OPENAI_API_KEY=...` and pass `use_azure true`, `azure_endpoint`, `azure_deployment`, `azure_api_version`.
- Dimensions mismatch:
- Ensure the dataset DIM equals the providers embedding dim. For OpenAI text-embedding-3 models, set `PARAM dim 512` (or another supported size) and use that same DIM for `LANCE.CREATE`.
- DB 0 restriction:
- Lance is not allowed on DB 0. Use db_id >= 1.
- Permissions:
- Read operations (SEARCH, LIST, INFO) require read permission.
- Mutations (CREATE, STORE, CREATEINDEX, DEL, DROP, EMBEDDING CONFIG SET) require readwrite permission.
- Backend gating:
- On Lance DBs, only LANCE.* commands are accepted (plus basic control).
- Current index behavior:
- `LANCE.CREATEINDEX` returns OK but is a no-op. Future versions will integrate Lance vector indices.
- Implementation files for reference:
- [src/lance_store.rs](src/lance_store.rs), [src/cmd.rs](src/cmd.rs), [src/rpc.rs](src/rpc.rs), [src/server.rs](src/server.rs), [src/embedding.rs](src/embedding.rs)

View File

@@ -0,0 +1,138 @@
# LanceDB Text and Images: End-to-End Example
This guide demonstrates creating a Lance backend database, ingesting two text documents and two images, performing searches over both, and cleaning up the datasets.
Prerequisites
- Build HeroDB and start the server with JSON-RPC enabled.
Commands:
```bash
cargo build --release
./target/release/herodb --dir /tmp/herodb --admin-secret mysecret --port 6379 --enable-rpc
```
We'll use:
- redis-cli for RESP commands against port 6379
- curl for JSON-RPC against 8080 if desired
- Deterministic local embedders to avoid external dependencies: testhash (text, dim 64) and testimagehash (image, dim 512)
0) Create a Lance-backed database (JSON-RPC)
Request:
```json
{ "jsonrpc": "2.0", "id": 1, "method": "herodb_createDatabase", "params": ["Lance", { "name": "media-db", "storage_path": null, "max_size": null, "redis_version": null }, null] }
```
Response returns db_id (assume 1). Select DB over RESP:
```bash
redis-cli -p 6379 SELECT 1
# → OK
```
1) Configure embedding providers
We'll create two datasets with independent embedding configs:
- textset → provider testhash, dim 64
- imageset → provider testimagehash, dim 512
Text config:
```bash
redis-cli -p 6379 LANCE.EMBEDDING CONFIG SET textset PROVIDER testhash MODEL any PARAM dim 64
# → OK
```
Image config:
```bash
redis-cli -p 6379 LANCE.EMBEDDING CONFIG SET imageset PROVIDER testimagehash MODEL any PARAM dim 512
# → OK
```
2) Create datasets
```bash
redis-cli -p 6379 LANCE.CREATE textset DIM 64
# → OK
redis-cli -p 6379 LANCE.CREATE imageset DIM 512
# → OK
```
3) Ingest two text documents (server-side embedding)
```bash
redis-cli -p 6379 LANCE.STORE textset ID doc-1 TEXT "The quick brown fox jumps over the lazy dog" META title "Fox" category "animal"
# → OK
redis-cli -p 6379 LANCE.STORE textset ID doc-2 TEXT "A fast auburn fox vaulted a sleepy canine" META title "Paraphrase" category "animal"
# → OK
```
4) Ingest two images
You can provide a URI or base64 bytes. Use URI for URIs, BYTES for base64 data.
Example using free placeholder images:
```bash
# Store via URI
redis-cli -p 6379 LANCE.STOREIMAGE imageset ID img-1 URI "https://picsum.photos/seed/1/256/256" META title "Seed1" group "demo"
# → OK
redis-cli -p 6379 LANCE.STOREIMAGE imageset ID img-2 URI "https://picsum.photos/seed/2/256/256" META title "Seed2" group "demo"
# → OK
```
If your environment blocks outbound HTTP, you can embed image bytes:
```bash
# Example: read a local file and base64 it (replace path)
b64=$(base64 -w0 ./image1.png)
redis-cli -p 6379 LANCE.STOREIMAGE imageset ID img-b64-1 BYTES "$b64" META title "Local1" group "demo"
```
5) Search text
```bash
# Top-2 nearest neighbors for a query
redis-cli -p 6379 LANCE.SEARCH textset K 2 QUERY "quick brown fox" RETURN 1 title
# → 1) [id, score, [k1,v1,...]]
```
With a filter (supports equality on schema or meta keys):
```bash
redis-cli -p 6379 LANCE.SEARCH textset K 2 QUERY "fox jumps" FILTER "category = 'animal'" RETURN 1 title
```
6) Search images
```bash
# Provide a URI as the query
redis-cli -p 6379 LANCE.SEARCHIMAGE imageset K 2 QUERYURI "https://picsum.photos/seed/1/256/256" RETURN 1 title
# Or provide base64 bytes as the query
qb64=$(curl -s https://picsum.photos/seed/3/256/256 | base64 -w0)
redis-cli -p 6379 LANCE.SEARCHIMAGE imageset K 2 QUERYBYTES "$qb64" RETURN 1 title
```
7) Inspect datasets
```bash
redis-cli -p 6379 LANCE.LIST
redis-cli -p 6379 LANCE.INFO textset
redis-cli -p 6379 LANCE.INFO imageset
```
8) Delete by id and drop datasets
```bash
# Delete one record
redis-cli -p 6379 LANCE.DEL textset doc-2
# → OK
# Drop entire datasets
redis-cli -p 6379 LANCE.DROP textset
redis-cli -p 6379 LANCE.DROP imageset
# → OK
```
Appendix: Using OpenAI embeddings instead of test providers
Text:
```bash
export OPENAI_API_KEY=sk-...
redis-cli -p 6379 LANCE.EMBEDDING CONFIG SET textset PROVIDER openai MODEL text-embedding-3-small PARAM dim 512
redis-cli -p 6379 LANCE.CREATE textset DIM 512
```
Azure OpenAI:
```bash
export AZURE_OPENAI_API_KEY=...
redis-cli -p 6379 LANCE.EMBEDDING CONFIG SET textset PROVIDER openai MODEL text-embedding-3-small \
PARAM use_azure true \
PARAM azure_endpoint https://myresource.openai.azure.com \
PARAM azure_deployment my-embed-deploy \
PARAM azure_api_version 2024-02-15 \
PARAM dim 512
```
Notes:
- Ensure dataset DIM matches the configured embedding dimension.
- Lance is only available for non-admin databases (db_id >= 1).
- On Lance DBs, only LANCE.* and basic control commands are allowed.

View File

@@ -48,8 +48,8 @@ fn init_admin_storage(
let storage: Arc<dyn StorageBackend> = match backend {
options::BackendType::Redb => Arc::new(Storage::new(&db_file, true, Some(admin_secret))?),
options::BackendType::Sled => Arc::new(SledStorage::new(&db_file, true, Some(admin_secret))?),
options::BackendType::Tantivy => {
return Err(DBError("Admin DB 0 cannot use Tantivy backend".to_string()))
options::BackendType::Tantivy | options::BackendType::Lance => {
return Err(DBError("Admin DB 0 cannot use search-only backends (Tantivy/Lance)".to_string()))
}
};
Ok(storage)
@@ -206,6 +206,9 @@ pub fn open_data_storage(
options::BackendType::Tantivy => {
return Err(DBError("Tantivy backend has no KV storage; use FT.* commands only".to_string()))
}
options::BackendType::Lance => {
return Err(DBError("Lance backend has no KV storage; use LANCE.* commands only".to_string()))
}
};
// Publish to registry
@@ -299,6 +302,7 @@ pub fn set_database_backend(
options::BackendType::Redb => "Redb",
options::BackendType::Sled => "Sled",
options::BackendType::Tantivy => "Tantivy",
options::BackendType::Lance => "Lance",
};
let _ = admin.hset(&mk, vec![("backend".to_string(), val.to_string())])?;
Ok(())
@@ -316,6 +320,7 @@ pub fn get_database_backend(
Some(s) if s == "Redb" => Ok(Some(options::BackendType::Redb)),
Some(s) if s == "Sled" => Ok(Some(options::BackendType::Sled)),
Some(s) if s == "Tantivy" => Ok(Some(options::BackendType::Tantivy)),
Some(s) if s == "Lance" => Ok(Some(options::BackendType::Lance)),
_ => Ok(None),
}
}

View File

@@ -1,4 +1,5 @@
use crate::{error::DBError, protocol::Protocol, server::Server};
use crate::{error::DBError, protocol::Protocol, server::Server, embedding::{EmbeddingConfig, EmbeddingProvider}};
use base64::{engine::general_purpose, Engine as _};
use tokio::time::{timeout, Duration};
use futures::future::select_all;
@@ -125,6 +126,67 @@ pub enum Cmd {
query: String,
group_by: Vec<String>,
reducers: Vec<String>,
},
// LanceDB text-first commands (no user-provided vectors)
LanceCreate {
name: String,
dim: usize,
},
LanceStoreText {
name: String,
id: String,
text: String,
meta: Vec<(String, String)>,
},
LanceSearchText {
name: String,
text: String,
k: usize,
filter: Option<String>,
return_fields: Option<Vec<String>>,
},
// Image-first commands (no user-provided vectors)
LanceStoreImage {
name: String,
id: String,
uri: Option<String>,
bytes_b64: Option<String>,
meta: Vec<(String, String)>,
},
LanceSearchImage {
name: String,
k: usize,
uri: Option<String>,
bytes_b64: Option<String>,
filter: Option<String>,
return_fields: Option<Vec<String>>,
},
LanceCreateIndex {
name: String,
index_type: String,
params: Vec<(String, String)>,
},
// Embedding configuration per dataset
LanceEmbeddingConfigSet {
name: String,
provider: String,
model: String,
params: Vec<(String, String)>,
},
LanceEmbeddingConfigGet {
name: String,
},
LanceList,
LanceInfo {
name: String,
},
LanceDel {
name: String,
id: String,
},
LanceDrop {
name: String,
}
}
@@ -815,6 +877,295 @@ impl Cmd {
let reducers = Vec::new();
Cmd::FtAggregate { index_name, query, group_by, reducers }
}
// ----- LANCE.* commands -----
"lance.create" => {
// LANCE.CREATE name DIM d
if cmd.len() != 4 || cmd[2].to_uppercase() != "DIM" {
return Err(DBError("ERR LANCE.CREATE requires: name DIM <dim>".to_string()));
}
let name = cmd[1].clone();
let dim: usize = cmd[3].parse().map_err(|_| DBError("ERR DIM must be an integer".to_string()))?;
Cmd::LanceCreate { name, dim }
}
"lance.store" => {
// LANCE.STORE name ID <id> TEXT <text> [META k v ...]
if cmd.len() < 6 {
return Err(DBError("ERR LANCE.STORE requires: name ID <id> TEXT <text> [META k v ...]".to_string()));
}
let name = cmd[1].clone();
let mut i = 2;
if cmd[i].to_uppercase() != "ID" || i + 1 >= cmd.len() {
return Err(DBError("ERR LANCE.STORE requires ID <id>".to_string()));
}
let id = cmd[i + 1].clone();
i += 2;
if i >= cmd.len() || cmd[i].to_uppercase() != "TEXT" {
return Err(DBError("ERR LANCE.STORE requires TEXT <text>".to_string()));
}
i += 1;
if i >= cmd.len() {
return Err(DBError("ERR LANCE.STORE requires TEXT <text>".to_string()));
}
let text = cmd[i].clone();
i += 1;
let mut meta: Vec<(String, String)> = Vec::new();
if i < cmd.len() && cmd[i].to_uppercase() == "META" {
i += 1;
while i + 1 < cmd.len() {
meta.push((cmd[i].clone(), cmd[i + 1].clone()));
i += 2;
}
}
Cmd::LanceStoreText { name, id, text, meta }
}
"lance.storeimage" => {
// LANCE.STOREIMAGE name ID <id> (URI <uri> | BYTES <base64>) [META k v ...]
if cmd.len() < 6 {
return Err(DBError("ERR LANCE.STOREIMAGE requires: name ID <id> (URI <uri> | BYTES <base64>) [META k v ...]".to_string()));
}
let name = cmd[1].clone();
let mut i = 2;
if cmd[i].to_uppercase() != "ID" || i + 1 >= cmd.len() {
return Err(DBError("ERR LANCE.STOREIMAGE requires ID <id>".to_string()));
}
let id = cmd[i + 1].clone();
i += 2;
let mut uri_opt: Option<String> = None;
let mut bytes_b64_opt: Option<String> = None;
if i < cmd.len() && cmd[i].to_uppercase() == "URI" {
if i + 1 >= cmd.len() { return Err(DBError("ERR LANCE.STOREIMAGE URI requires a value".to_string())); }
uri_opt = Some(cmd[i + 1].clone());
i += 2;
} else if i < cmd.len() && cmd[i].to_uppercase() == "BYTES" {
if i + 1 >= cmd.len() { return Err(DBError("ERR LANCE.STOREIMAGE BYTES requires a value".to_string())); }
bytes_b64_opt = Some(cmd[i + 1].clone());
i += 2;
} else {
return Err(DBError("ERR LANCE.STOREIMAGE requires either URI <uri> or BYTES <base64>".to_string()));
}
// Parse optional META pairs
let mut meta: Vec<(String, String)> = Vec::new();
if i < cmd.len() && cmd[i].to_uppercase() == "META" {
i += 1;
while i + 1 < cmd.len() {
meta.push((cmd[i].clone(), cmd[i + 1].clone()));
i += 2;
}
}
Cmd::LanceStoreImage { name, id, uri: uri_opt, bytes_b64: bytes_b64_opt, meta }
}
"lance.search" => {
// LANCE.SEARCH name K <k> QUERY <text> [FILTER expr] [RETURN n fields...]
if cmd.len() < 6 {
return Err(DBError("ERR LANCE.SEARCH requires: name K <k> QUERY <text> [FILTER expr] [RETURN n fields...]".to_string()));
}
let name = cmd[1].clone();
if cmd[2].to_uppercase() != "K" {
return Err(DBError("ERR LANCE.SEARCH requires K <k>".to_string()));
}
let k: usize = cmd[3].parse().map_err(|_| DBError("ERR K must be an integer".to_string()))?;
if cmd[4].to_uppercase() != "QUERY" {
return Err(DBError("ERR LANCE.SEARCH requires QUERY <text>".to_string()));
}
let mut i = 5;
if i >= cmd.len() {
return Err(DBError("ERR LANCE.SEARCH requires QUERY <text>".to_string()));
}
let text = cmd[i].clone();
i += 1;
let mut filter: Option<String> = None;
let mut return_fields: Option<Vec<String>> = None;
while i < cmd.len() {
match cmd[i].to_uppercase().as_str() {
"FILTER" => {
if i + 1 >= cmd.len() {
return Err(DBError("ERR FILTER requires an expression".to_string()));
}
filter = Some(cmd[i + 1].clone());
i += 2;
}
"RETURN" => {
if i + 1 >= cmd.len() {
return Err(DBError("ERR RETURN requires field count".to_string()));
}
let n: usize = cmd[i + 1].parse().map_err(|_| DBError("ERR RETURN count must be integer".to_string()))?;
i += 2;
let mut fields = Vec::new();
for _ in 0..n {
if i < cmd.len() {
fields.push(cmd[i].clone());
i += 1;
}
}
return_fields = Some(fields);
}
_ => { i += 1; }
}
}
Cmd::LanceSearchText { name, text, k, filter, return_fields }
}
"lance.searchimage" => {
// LANCE.SEARCHIMAGE name K <k> (QUERYURI <uri> | QUERYBYTES <base64>) [FILTER expr] [RETURN n fields...]
if cmd.len() < 6 {
return Err(DBError("ERR LANCE.SEARCHIMAGE requires: name K <k> (QUERYURI <uri> | QUERYBYTES <base64>) [FILTER expr] [RETURN n fields...]".to_string()));
}
let name = cmd[1].clone();
if cmd[2].to_uppercase() != "K" {
return Err(DBError("ERR LANCE.SEARCHIMAGE requires K <k>".to_string()));
}
let k: usize = cmd[3].parse().map_err(|_| DBError("ERR K must be an integer".to_string()))?;
let mut i = 4;
let mut uri_opt: Option<String> = None;
let mut bytes_b64_opt: Option<String> = None;
if i < cmd.len() && cmd[i].to_uppercase() == "QUERYURI" {
if i + 1 >= cmd.len() { return Err(DBError("ERR QUERYURI requires a value".to_string())); }
uri_opt = Some(cmd[i + 1].clone());
i += 2;
} else if i < cmd.len() && cmd[i].to_uppercase() == "QUERYBYTES" {
if i + 1 >= cmd.len() { return Err(DBError("ERR QUERYBYTES requires a value".to_string())); }
bytes_b64_opt = Some(cmd[i + 1].clone());
i += 2;
} else {
return Err(DBError("ERR LANCE.SEARCHIMAGE requires QUERYURI <uri> or QUERYBYTES <base64>".to_string()));
}
let mut filter: Option<String> = None;
let mut return_fields: Option<Vec<String>> = None;
while i < cmd.len() {
match cmd[i].to_uppercase().as_str() {
"FILTER" => {
if i + 1 >= cmd.len() {
return Err(DBError("ERR FILTER requires an expression".to_string()));
}
filter = Some(cmd[i + 1].clone());
i += 2;
}
"RETURN" => {
if i + 1 >= cmd.len() {
return Err(DBError("ERR RETURN requires field count".to_string()));
}
let n: usize = cmd[i + 1].parse().map_err(|_| DBError("ERR RETURN count must be integer".to_string()))?;
i += 2;
let mut fields = Vec::new();
for _ in 0..n {
if i < cmd.len() {
fields.push(cmd[i].clone());
i += 1;
}
}
return_fields = Some(fields);
}
_ => { i += 1; }
}
}
Cmd::LanceSearchImage { name, k, uri: uri_opt, bytes_b64: bytes_b64_opt, filter, return_fields }
}
"lance.createindex" => {
// LANCE.CREATEINDEX name TYPE t [PARAM k v ...]
if cmd.len() < 4 || cmd[2].to_uppercase() != "TYPE" {
return Err(DBError("ERR LANCE.CREATEINDEX requires: name TYPE <type> [PARAM k v ...]".to_string()));
}
let name = cmd[1].clone();
let index_type = cmd[3].clone();
let mut params: Vec<(String, String)> = Vec::new();
let mut i = 4;
if i < cmd.len() && cmd[i].to_uppercase() == "PARAM" {
i += 1;
while i + 1 < cmd.len() {
params.push((cmd[i].clone(), cmd[i + 1].clone()));
i += 2;
}
}
Cmd::LanceCreateIndex { name, index_type, params }
}
"lance.embedding" => {
// LANCE.EMBEDDING CONFIG SET name PROVIDER p MODEL m [PARAM k v ...]
// LANCE.EMBEDDING CONFIG GET name
if cmd.len() < 3 || cmd[1].to_uppercase() != "CONFIG" {
return Err(DBError("ERR LANCE.EMBEDDING requires CONFIG subcommand".to_string()));
}
if cmd.len() >= 4 && cmd[2].to_uppercase() == "SET" {
if cmd.len() < 8 {
return Err(DBError("ERR LANCE.EMBEDDING CONFIG SET requires: SET name PROVIDER p MODEL m [PARAM k v ...]".to_string()));
}
let name = cmd[3].clone();
let mut i = 4;
let mut provider: Option<String> = None;
let mut model: Option<String> = None;
let mut params: Vec<(String, String)> = Vec::new();
while i < cmd.len() {
match cmd[i].to_uppercase().as_str() {
"PROVIDER" => {
if i + 1 >= cmd.len() {
return Err(DBError("ERR PROVIDER requires a value".to_string()));
}
provider = Some(cmd[i + 1].clone());
i += 2;
}
"MODEL" => {
if i + 1 >= cmd.len() {
return Err(DBError("ERR MODEL requires a value".to_string()));
}
model = Some(cmd[i + 1].clone());
i += 2;
}
"PARAM" => {
i += 1;
while i + 1 < cmd.len() {
params.push((cmd[i].clone(), cmd[i + 1].clone()));
i += 2;
}
}
_ => {
// Unknown token; break to avoid infinite loop
i += 1;
}
}
}
let provider = provider.ok_or_else(|| DBError("ERR missing PROVIDER".to_string()))?;
let model = model.ok_or_else(|| DBError("ERR missing MODEL".to_string()))?;
Cmd::LanceEmbeddingConfigSet { name, provider, model, params }
} else if cmd.len() == 4 && cmd[2].to_uppercase() == "GET" {
let name = cmd[3].clone();
Cmd::LanceEmbeddingConfigGet { name }
} else {
return Err(DBError("ERR LANCE.EMBEDDING CONFIG supports: SET ... | GET name".to_string()));
}
}
"lance.list" => {
if cmd.len() != 1 {
return Err(DBError("ERR LANCE.LIST takes no arguments".to_string()));
}
Cmd::LanceList
}
"lance.info" => {
if cmd.len() != 2 {
return Err(DBError("ERR LANCE.INFO requires: name".to_string()));
}
Cmd::LanceInfo { name: cmd[1].clone() }
}
"lance.drop" => {
if cmd.len() != 2 {
return Err(DBError("ERR LANCE.DROP requires: name".to_string()));
}
Cmd::LanceDrop { name: cmd[1].clone() }
}
"lance.del" => {
if cmd.len() != 3 {
return Err(DBError("ERR LANCE.DEL requires: name id".to_string()));
}
Cmd::LanceDel { name: cmd[1].clone(), id: cmd[2].clone() }
}
_ => Cmd::Unknow(cmd[0].clone()),
},
protocol,
@@ -853,6 +1204,18 @@ impl Cmd {
.map(|b| matches!(b, crate::options::BackendType::Tantivy))
.unwrap_or(false);
// Determine Lance backend similarly
let is_lance_backend = crate::admin_meta::get_database_backend(
&server.option.dir,
server.option.backend.clone(),
&server.option.admin_secret,
server.selected_db,
)
.ok()
.flatten()
.map(|b| matches!(b, crate::options::BackendType::Lance))
.unwrap_or(false);
if is_tantivy_backend {
match &self {
Cmd::Select(..)
@@ -876,6 +1239,34 @@ impl Cmd {
}
}
// Lance backend gating: allow only LANCE.* and basic control/info commands
if is_lance_backend {
match &self {
Cmd::Select(..)
| Cmd::Quit
| Cmd::Client(..)
| Cmd::ClientSetName(..)
| Cmd::ClientGetName
| Cmd::Command(..)
| Cmd::Info(..)
| Cmd::LanceCreate { .. }
| Cmd::LanceStoreText { .. }
| Cmd::LanceSearchText { .. }
| Cmd::LanceStoreImage { .. }
| Cmd::LanceSearchImage { .. }
| Cmd::LanceEmbeddingConfigSet { .. }
| Cmd::LanceEmbeddingConfigGet { .. }
| Cmd::LanceCreateIndex { .. }
| Cmd::LanceList
| Cmd::LanceInfo { .. }
| Cmd::LanceDel { .. }
| Cmd::LanceDrop { .. } => {}
_ => {
return Ok(Protocol::err("ERR backend is Lance; only LANCE.* commands are allowed"));
}
}
}
// If selected DB is not Tantivy, forbid all FT.* commands here.
if !is_tantivy_backend {
match &self {
@@ -893,6 +1284,27 @@ impl Cmd {
}
}
// If selected DB is not Lance, forbid all LANCE.* commands here.
if !is_lance_backend {
match &self {
Cmd::LanceCreate { .. }
| Cmd::LanceStoreText { .. }
| Cmd::LanceSearchText { .. }
| Cmd::LanceStoreImage { .. }
| Cmd::LanceSearchImage { .. }
| Cmd::LanceEmbeddingConfigSet { .. }
| Cmd::LanceEmbeddingConfigGet { .. }
| Cmd::LanceCreateIndex { .. }
| Cmd::LanceList
| Cmd::LanceInfo { .. }
| Cmd::LanceDel { .. }
| Cmd::LanceDrop { .. } => {
return Ok(Protocol::err("ERR DB backend is not Lance; LANCE.* commands are not allowed"));
}
_ => {}
}
}
match self {
Cmd::Select(db, key) => select_cmd(server, db, key).await,
Cmd::Ping => Ok(Protocol::SimpleString("PONG".to_string())),
@@ -1015,6 +1427,307 @@ impl Cmd {
Ok(Protocol::err("FT.AGGREGATE not implemented yet"))
}
// LanceDB commands
Cmd::LanceCreate { name, dim } => {
if !server.has_write_permission() {
return Ok(Protocol::err("ERR write permission denied"));
}
match server.lance_store()?.create_dataset(&name, dim).await {
Ok(()) => Ok(Protocol::SimpleString("OK".to_string())),
Err(e) => Ok(Protocol::err(&e.0)),
}
}
Cmd::LanceEmbeddingConfigSet { name, provider, model, params } => {
if !server.has_write_permission() {
return Ok(Protocol::err("ERR write permission denied"));
}
// Map provider string to enum
let p_lc = provider.to_lowercase();
let prov = match p_lc.as_str() {
"test-hash" | "testhash" => EmbeddingProvider::TestHash,
"testimagehash" | "image-test-hash" | "imagetesthash" => EmbeddingProvider::ImageTestHash,
"fastembed" | "lancefastembed" => EmbeddingProvider::LanceFastEmbed,
"openai" | "lanceopenai" => EmbeddingProvider::LanceOpenAI,
other => EmbeddingProvider::LanceOther(other.to_string()),
};
let cfg = EmbeddingConfig {
provider: prov,
model,
params: params.into_iter().collect(),
};
match server.set_dataset_embedding_config(&name, &cfg) {
Ok(()) => Ok(Protocol::SimpleString("OK".to_string())),
Err(e) => Ok(Protocol::err(&e.0)),
}
}
Cmd::LanceEmbeddingConfigGet { name } => {
match server.get_dataset_embedding_config(&name) {
Ok(cfg) => {
let mut arr = Vec::new();
arr.push(Protocol::BulkString("provider".to_string()));
arr.push(Protocol::BulkString(match cfg.provider {
EmbeddingProvider::TestHash => "test-hash".to_string(),
EmbeddingProvider::ImageTestHash => "testimagehash".to_string(),
EmbeddingProvider::LanceFastEmbed => "lancefastembed".to_string(),
EmbeddingProvider::LanceOpenAI => "lanceopenai".to_string(),
EmbeddingProvider::LanceOther(ref s) => s.clone(),
}));
arr.push(Protocol::BulkString("model".to_string()));
arr.push(Protocol::BulkString(cfg.model.clone()));
arr.push(Protocol::BulkString("params".to_string()));
arr.push(Protocol::BulkString(serde_json::to_string(&cfg.params).unwrap_or_else(|_| "{}".to_string())));
Ok(Protocol::Array(arr))
}
Err(e) => Ok(Protocol::err(&e.0)),
}
}
Cmd::LanceStoreText { name, id, text, meta } => {
if !server.has_write_permission() {
return Ok(Protocol::err("ERR write permission denied"));
}
// Resolve embedder and embed text on a plain OS thread to avoid tokio runtime panics from reqwest::blocking
let embedder = server.get_embedder_for(&name)?;
let (tx, rx) = tokio::sync::oneshot::channel();
let emb_arc = embedder.clone();
let text_cl = text.clone();
std::thread::spawn(move || {
let res = emb_arc.embed(&text_cl);
let _ = tx.send(res);
});
let vector = match rx.await {
Ok(Ok(v)) => v,
Ok(Err(e)) => return Ok(Protocol::err(&e.0)),
Err(recv_err) => return Ok(Protocol::err(&format!("ERR embedding thread error: {}", recv_err))),
};
let meta_map: std::collections::HashMap<String, String> = meta.into_iter().collect();
match server.lance_store()?.store_vector(&name, &id, vector, meta_map, Some(text)).await {
Ok(()) => Ok(Protocol::SimpleString("OK".to_string())),
Err(e) => Ok(Protocol::err(&e.0)),
}
}
Cmd::LanceSearchText { name, text, k, filter, return_fields } => {
// Resolve embedder and embed query text on a plain OS thread
let embedder = server.get_embedder_for(&name)?;
let (tx, rx) = tokio::sync::oneshot::channel();
let emb_arc = embedder.clone();
let text_cl = text.clone();
std::thread::spawn(move || {
let res = emb_arc.embed(&text_cl);
let _ = tx.send(res);
});
let qv = match rx.await {
Ok(Ok(v)) => v,
Ok(Err(e)) => return Ok(Protocol::err(&e.0)),
Err(recv_err) => return Ok(Protocol::err(&format!("ERR embedding thread error: {}", recv_err))),
};
match server.lance_store()?.search_vectors(&name, qv, k, filter, return_fields).await {
Ok(results) => {
// Encode as array of [id, score, [k1, v1, k2, v2, ...]]
let mut arr = Vec::new();
for (id, score, meta) in results {
let mut meta_arr: Vec<Protocol> = Vec::new();
for (k, v) in meta {
meta_arr.push(Protocol::BulkString(k));
meta_arr.push(Protocol::BulkString(v));
}
arr.push(Protocol::Array(vec![
Protocol::BulkString(id),
Protocol::BulkString(score.to_string()),
Protocol::Array(meta_arr),
]));
}
Ok(Protocol::Array(arr))
}
Err(e) => Ok(Protocol::err(&e.0)),
}
}
// New: Image store
Cmd::LanceStoreImage { name, id, uri, bytes_b64, meta } => {
if !server.has_write_permission() {
return Ok(Protocol::err("ERR write permission denied"));
}
let use_uri = uri.is_some();
let use_b64 = bytes_b64.is_some();
if (use_uri && use_b64) || (!use_uri && !use_b64) {
return Ok(Protocol::err("ERR Provide exactly one of URI or BYTES for LANCE.STOREIMAGE"));
}
let max_bytes: usize = std::env::var("HERODB_IMAGE_MAX_BYTES")
.ok()
.and_then(|s| s.parse::<u64>().ok())
.unwrap_or(10 * 1024 * 1024) as usize;
let media_uri_opt = if let Some(u) = uri.clone() {
match server.fetch_image_bytes_from_uri(&u) {
Ok(_) => {}
Err(e) => return Ok(Protocol::err(&e.0)),
}
Some(u)
} else {
None
};
let bytes: Vec<u8> = if let Some(u) = uri {
match server.fetch_image_bytes_from_uri(&u) {
Ok(b) => b,
Err(e) => return Ok(Protocol::err(&e.0)),
}
} else {
let b64 = bytes_b64.unwrap_or_default();
let data = match general_purpose::STANDARD.decode(b64.as_bytes()) {
Ok(d) => d,
Err(e) => return Ok(Protocol::err(&format!("ERR base64 decode error: {}", e))),
};
if data.len() > max_bytes {
return Ok(Protocol::err(&format!("ERR image exceeds max allowed bytes {}", max_bytes)));
}
data
};
let img_embedder = match server.get_image_embedder_for(&name) {
Ok(e) => e,
Err(e) => return Ok(Protocol::err(&e.0)),
};
let (tx, rx) = tokio::sync::oneshot::channel();
let emb_arc = img_embedder.clone();
let bytes_cl = bytes.clone();
std::thread::spawn(move || {
let res = emb_arc.embed_image(&bytes_cl);
let _ = tx.send(res);
});
let vector = match rx.await {
Ok(Ok(v)) => v,
Ok(Err(e)) => return Ok(Protocol::err(&e.0)),
Err(recv_err) => return Ok(Protocol::err(&format!("ERR embedding thread error: {}", recv_err))),
};
let meta_map: std::collections::HashMap<String, String> = meta.into_iter().collect();
match server.lance_store()?.store_vector_with_media(
&name,
&id,
vector,
meta_map,
None,
Some("image".to_string()),
media_uri_opt,
).await {
Ok(()) => Ok(Protocol::SimpleString("OK".to_string())),
Err(e) => Ok(Protocol::err(&e.0)),
}
}
// New: Image search
Cmd::LanceSearchImage { name, k, uri, bytes_b64, filter, return_fields } => {
let use_uri = uri.is_some();
let use_b64 = bytes_b64.is_some();
if (use_uri && use_b64) || (!use_uri && !use_b64) {
return Ok(Protocol::err("ERR Provide exactly one of QUERYURI or QUERYBYTES for LANCE.SEARCHIMAGE"));
}
let max_bytes: usize = std::env::var("HERODB_IMAGE_MAX_BYTES")
.ok()
.and_then(|s| s.parse::<u64>().ok())
.unwrap_or(10 * 1024 * 1024) as usize;
let bytes: Vec<u8> = if let Some(u) = uri {
match server.fetch_image_bytes_from_uri(&u) {
Ok(b) => b,
Err(e) => return Ok(Protocol::err(&e.0)),
}
} else {
let b64 = bytes_b64.unwrap_or_default();
let data = match general_purpose::STANDARD.decode(b64.as_bytes()) {
Ok(d) => d,
Err(e) => return Ok(Protocol::err(&format!("ERR base64 decode error: {}", e))),
};
if data.len() > max_bytes {
return Ok(Protocol::err(&format!("ERR image exceeds max allowed bytes {}", max_bytes)));
}
data
};
let img_embedder = match server.get_image_embedder_for(&name) {
Ok(e) => e,
Err(e) => return Ok(Protocol::err(&e.0)),
};
let (tx, rx) = tokio::sync::oneshot::channel();
std::thread::spawn(move || {
let res = img_embedder.embed_image(&bytes);
let _ = tx.send(res);
});
let qv = match rx.await {
Ok(Ok(v)) => v,
Ok(Err(e)) => return Ok(Protocol::err(&e.0)),
Err(recv_err) => return Ok(Protocol::err(&format!("ERR embedding thread error: {}", recv_err))),
};
match server.lance_store()?.search_vectors(&name, qv, k, filter, return_fields).await {
Ok(results) => {
let mut arr = Vec::new();
for (id, score, meta) in results {
let mut meta_arr: Vec<Protocol> = Vec::new();
for (k, v) in meta {
meta_arr.push(Protocol::BulkString(k));
meta_arr.push(Protocol::BulkString(v));
}
arr.push(Protocol::Array(vec![
Protocol::BulkString(id),
Protocol::BulkString(score.to_string()),
Protocol::Array(meta_arr),
]));
}
Ok(Protocol::Array(arr))
}
Err(e) => Ok(Protocol::err(&e.0)),
}
}
Cmd::LanceCreateIndex { name, index_type, params } => {
if !server.has_write_permission() {
return Ok(Protocol::err("ERR write permission denied"));
}
let params_map: std::collections::HashMap<String, String> = params.into_iter().collect();
match server.lance_store()?.create_index(&name, &index_type, params_map).await {
Ok(()) => Ok(Protocol::SimpleString("OK".to_string())),
Err(e) => Ok(Protocol::err(&e.0)),
}
}
Cmd::LanceList => {
match server.lance_store()?.list_datasets().await {
Ok(list) => Ok(Protocol::Array(list.into_iter().map(Protocol::BulkString).collect())),
Err(e) => Ok(Protocol::err(&e.0)),
}
}
Cmd::LanceInfo { name } => {
match server.lance_store()?.get_dataset_info(&name).await {
Ok(info) => {
let mut arr = Vec::new();
for (k, v) in info {
arr.push(Protocol::BulkString(k));
arr.push(Protocol::BulkString(v));
}
Ok(Protocol::Array(arr))
}
Err(e) => Ok(Protocol::err(&e.0)),
}
}
Cmd::LanceDel { name, id } => {
if !server.has_write_permission() {
return Ok(Protocol::err("ERR write permission denied"));
}
match server.lance_store()?.delete_by_id(&name, &id).await {
Ok(b) => Ok(Protocol::SimpleString(if b { "1" } else { "0" }.to_string())),
Err(e) => Ok(Protocol::err(&e.0)),
}
}
Cmd::LanceDrop { name } => {
if !server.has_write_permission() {
return Ok(Protocol::err("ERR write permission denied"));
}
match server.lance_store()?.drop_dataset(&name).await {
Ok(_b) => Ok(Protocol::SimpleString("OK".to_string())),
Err(e) => Ok(Protocol::err(&e.0)),
}
}
Cmd::Unknow(s) => Ok(Protocol::err(&format!("ERR unknown command `{}`", s))),
}
}
@@ -1114,8 +1827,8 @@ async fn select_cmd(server: &mut Server, db: u64, key: Option<String>) -> Result
.ok()
.flatten();
if matches!(eff_backend, Some(crate::options::BackendType::Tantivy)) {
// Tantivy DBs have no KV storage; allow SELECT to succeed
if matches!(eff_backend, Some(crate::options::BackendType::Tantivy) | Some(crate::options::BackendType::Lance)) {
// Search-only DBs (Tantivy/Lance) have no KV storage; allow SELECT to succeed
Ok(Protocol::SimpleString("OK".to_string()))
} else {
match server.current_storage() {
@@ -1459,9 +2172,9 @@ async fn dbsize_cmd(server: &Server) -> Result<Protocol, DBError> {
}
async fn info_cmd(server: &Server, section: &Option<String>) -> Result<Protocol, DBError> {
// For Tantivy backend, there is no KV storage; synthesize minimal info.
// For Tantivy or Lance backend, there is no KV storage; synthesize minimal info.
// Determine effective backend for the currently selected db.
let is_tantivy_db = crate::admin_meta::get_database_backend(
let is_search_only_db = crate::admin_meta::get_database_backend(
&server.option.dir,
server.option.backend.clone(),
&server.option.admin_secret,
@@ -1469,10 +2182,10 @@ async fn info_cmd(server: &Server, section: &Option<String>) -> Result<Protocol,
)
.ok()
.flatten()
.map(|b| matches!(b, crate::options::BackendType::Tantivy))
.map(|b| matches!(b, crate::options::BackendType::Tantivy | crate::options::BackendType::Lance))
.unwrap_or(false);
let storage_info: Vec<(String, String)> = if is_tantivy_db {
let storage_info: Vec<(String, String)> = if is_search_only_db {
vec![
("db_size".to_string(), "0".to_string()),
("is_encrypted".to_string(), "false".to_string()),

View File

@@ -1,8 +1,8 @@
use chacha20poly1305::{
aead::{Aead, KeyInit, OsRng},
aead::{Aead, KeyInit},
XChaCha20Poly1305, XNonce,
};
use rand::RngCore;
use rand::{rngs::OsRng, RngCore};
use sha2::{Digest, Sha256};
const VERSION: u8 = 1;
@@ -31,7 +31,7 @@ pub struct CryptoFactory {
impl CryptoFactory {
/// Accepts any secret bytes; turns them into a 32-byte key (SHA-256).
pub fn new<S: AsRef<[u8]>>(secret: S) -> Self {
let mut h = Sha256::new();
let mut h = Sha256::default();
h.update(b"xchacha20poly1305-factory:v1"); // domain separation
h.update(secret.as_ref());
let digest = h.finalize(); // 32 bytes

405
src/embedding.rs Normal file
View File

@@ -0,0 +1,405 @@
// Embedding abstraction and minimal providers.
use std::collections::HashMap;
use std::sync::Arc;
use serde::{Deserialize, Serialize};
use crate::error::DBError;
// Networking for OpenAI/Azure
use std::time::Duration;
use ureq::{Agent, AgentBuilder};
use serde_json::json;
/// Provider identifiers. Extend as needed to mirror LanceDB-supported providers.
#[derive(Debug, Clone, Serialize, Deserialize, PartialEq, Eq)]
#[serde(rename_all = "snake_case")]
pub enum EmbeddingProvider {
// Deterministic, local-only embedder for CI and offline development (text).
TestHash,
// Deterministic, local-only embedder for CI and offline development (image).
ImageTestHash,
// Placeholders for LanceDB-supported providers; implementers can add concrete backends later.
LanceFastEmbed,
LanceOpenAI,
LanceOther(String),
}
/// Serializable embedding configuration.
/// params: arbitrary key-value map for provider-specific knobs (e.g., "dim", "api_key_env", etc.)
#[derive(Debug, Clone, Serialize, Deserialize)]
pub struct EmbeddingConfig {
pub provider: EmbeddingProvider,
pub model: String,
#[serde(default)]
pub params: HashMap<String, String>,
}
impl EmbeddingConfig {
pub fn get_param_usize(&self, key: &str) -> Option<usize> {
self.params.get(key).and_then(|v| v.parse::<usize>().ok())
}
pub fn get_param_string(&self, key: &str) -> Option<String> {
self.params.get(key).cloned()
}
}
/// A provider-agnostic text embedding interface.
pub trait Embedder: Send + Sync {
/// Human-readable provider/model name
fn name(&self) -> String;
/// Embedding dimension
fn dim(&self) -> usize;
/// Embed a single text string into a fixed-length vector
fn embed(&self, text: &str) -> Result<Vec<f32>, DBError>;
/// Embed many texts; default maps embed() over inputs
fn embed_many(&self, texts: &[String]) -> Result<Vec<Vec<f32>>, DBError> {
texts.iter().map(|t| self.embed(t)).collect()
}
}
//// ----------------------------- TEXT: deterministic test embedder -----------------------------
/// Deterministic, no-deps, no-network embedder for CI and offline dev.
/// Algorithm:
/// - Fold bytes of UTF-8 into 'dim' buckets with a simple rolling hash
/// - Apply tanh-like scaling and L2-normalize to unit length
pub struct TestHashEmbedder {
dim: usize,
model_name: String,
}
impl TestHashEmbedder {
pub fn new(dim: usize, model_name: impl Into<String>) -> Self {
Self { dim, model_name: model_name.into() }
}
fn l2_normalize(mut v: Vec<f32>) -> Vec<f32> {
let norm: f32 = v.iter().map(|x| x * x).sum::<f32>().sqrt();
if norm > 0.0 {
for x in &mut v {
*x /= norm;
}
}
v
}
}
impl Embedder for TestHashEmbedder {
fn name(&self) -> String {
format!("test-hash:{}", self.model_name)
}
fn dim(&self) -> usize {
self.dim
}
fn embed(&self, text: &str) -> Result<Vec<f32>, DBError> {
let mut acc = vec![0f32; self.dim];
// A simple, deterministic folding hash over bytes
let mut h1: u32 = 2166136261u32; // FNV-like seed
let mut h2: u32 = 0x9e3779b9u32; // golden ratio
for (i, b) in text.as_bytes().iter().enumerate() {
h1 ^= *b as u32;
h1 = h1.wrapping_mul(16777619u32);
h2 = h2.wrapping_add(((*b as u32) << (i % 13)) ^ (h1.rotate_left((i % 7) as u32)));
let idx = (h1 ^ h2) as usize % self.dim;
// Map byte to [-1, 1] and accumulate with mild decay by position
let val = ((*b as f32) / 127.5 - 1.0) * (1.0 / (1.0 + (i as f32 / 32.0)));
acc[idx] += val;
}
// Non-linear squashing to stabilize + normalize
for x in &mut acc {
*x = x.tanh();
}
Ok(Self::l2_normalize(acc))
}
}
//// ----------------------------- IMAGE: trait + deterministic test embedder -----------------------------
/// Image embedding interface (separate from text to keep modality-specific inputs).
pub trait ImageEmbedder: Send + Sync {
/// Human-readable provider/model name
fn name(&self) -> String;
/// Embedding dimension
fn dim(&self) -> usize;
/// Embed a single image (raw bytes)
fn embed_image(&self, bytes: &[u8]) -> Result<Vec<f32>, DBError>;
/// Embed many images; default maps embed_image() over inputs
fn embed_many_images(&self, images: &[Vec<u8>]) -> Result<Vec<Vec<f32>>, DBError> {
images.iter().map(|b| self.embed_image(b)).collect()
}
}
/// Deterministic image embedder that folds bytes into buckets, applies tanh-like nonlinearity,
/// and L2-normalizes. Suitable for CI and offline development.
/// NOTE: This is NOT semantic; it is a stable hash-like representation.
pub struct TestImageHashEmbedder {
dim: usize,
model_name: String,
}
impl TestImageHashEmbedder {
pub fn new(dim: usize, model_name: impl Into<String>) -> Self {
Self { dim, model_name: model_name.into() }
}
fn l2_normalize(mut v: Vec<f32>) -> Vec<f32> {
let norm: f32 = v.iter().map(|x| x * x).sum::<f32>().sqrt();
if norm > 0.0 {
for x in &mut v {
*x /= norm;
}
}
v
}
}
impl ImageEmbedder for TestImageHashEmbedder {
fn name(&self) -> String {
format!("test-image-hash:{}", self.model_name)
}
fn dim(&self) -> usize {
self.dim
}
fn embed_image(&self, bytes: &[u8]) -> Result<Vec<f32>, DBError> {
// Deterministic fold across bytes with two rolling accumulators.
let mut acc = vec![0f32; self.dim];
let mut h1: u32 = 0x811C9DC5; // FNV-like
let mut h2: u32 = 0x9E3779B9; // golden ratio
for (i, b) in bytes.iter().enumerate() {
h1 ^= *b as u32;
h1 = h1.wrapping_mul(16777619u32);
// combine with position and h2
h2 = h2.wrapping_add(((i as u32).rotate_left((i % 13) as u32)) ^ h1.rotate_left((i % 7) as u32));
let idx = (h1 ^ h2) as usize % self.dim;
// Map to [-1,1] and decay with position
let val = ((*b as f32) / 127.5 - 1.0) * (1.0 / (1.0 + (i as f32 / 128.0)));
acc[idx] += val;
}
for x in &mut acc {
*x = x.tanh();
}
Ok(Self::l2_normalize(acc))
}
}
//// OpenAI embedder (supports OpenAI and Azure OpenAI via REST)
struct OpenAIEmbedder {
model: String,
dim: usize,
agent: Agent,
endpoint: String,
headers: Vec<(String, String)>,
use_azure: bool,
}
impl OpenAIEmbedder {
fn new_from_config(cfg: &EmbeddingConfig) -> Result<Self, DBError> {
// Whether to use Azure OpenAI
let use_azure = cfg
.get_param_string("use_azure")
.map(|s| s.eq_ignore_ascii_case("true"))
.unwrap_or(false);
// Resolve API key (OPENAI_API_KEY or AZURE_OPENAI_API_KEY by default)
let api_key_env = cfg
.get_param_string("api_key_env")
.unwrap_or_else(|| {
if use_azure {
"AZURE_OPENAI_API_KEY".to_string()
} else {
"OPENAI_API_KEY".to_string()
}
});
let api_key = std::env::var(&api_key_env)
.map_err(|_| DBError(format!("Missing API key in env '{}'", api_key_env)))?;
// Resolve endpoint
// - Standard OpenAI: https://api.openai.com/v1/embeddings (default) or params["base_url"]
// - Azure OpenAI: {azure_endpoint}/openai/deployments/{deployment}/embeddings?api-version=...
let endpoint = if use_azure {
let base = cfg
.get_param_string("azure_endpoint")
.ok_or_else(|| DBError("Missing 'azure_endpoint' for Azure OpenAI".into()))?;
let deployment = cfg
.get_param_string("azure_deployment")
.unwrap_or_else(|| cfg.model.clone());
let api_version = cfg
.get_param_string("azure_api_version")
.unwrap_or_else(|| "2023-05-15".to_string());
format!(
"{}/openai/deployments/{}/embeddings?api-version={}",
base.trim_end_matches('/'),
deployment,
api_version
)
} else {
cfg.get_param_string("base_url")
.unwrap_or_else(|| "https://api.openai.com/v1/embeddings".to_string())
};
// Determine expected dimension (default 1536 for text-embedding-3-small; callers should override if needed)
let dim = cfg
.get_param_usize("dim")
.or_else(|| cfg.get_param_usize("dimensions"))
.unwrap_or(1536);
// Build an HTTP agent with timeouts (blocking; no tokio runtime involved)
let agent = AgentBuilder::new()
.timeout_read(Duration::from_secs(30))
.timeout_write(Duration::from_secs(30))
.build();
// Headers
let mut headers: Vec<(String, String)> = Vec::new();
headers.push(("Content-Type".to_string(), "application/json".to_string()));
if use_azure {
headers.push(("api-key".to_string(), api_key));
} else {
headers.push(("Authorization".to_string(), format!("Bearer {}", api_key)));
}
Ok(Self {
model: cfg.model.clone(),
dim,
agent,
endpoint,
headers,
use_azure,
})
}
fn request_many(&self, inputs: &[String]) -> Result<Vec<Vec<f32>>, DBError> {
// Compose request body:
// - Standard OpenAI: { "model": ..., "input": [...], "dimensions": dim? }
// - Azure: { "input": [...], "dimensions": dim? } (model from deployment)
let mut body = if self.use_azure {
json!({ "input": inputs })
} else {
json!({ "model": self.model, "input": inputs })
};
if self.dim > 0 {
body.as_object_mut()
.unwrap()
.insert("dimensions".to_string(), json!(self.dim));
}
// Build request
let mut req = self.agent.post(&self.endpoint);
for (k, v) in &self.headers {
req = req.set(k, v);
}
// Send and handle errors
let resp = req.send_json(body);
let text = match resp {
Ok(r) => r
.into_string()
.map_err(|e| DBError(format!("Failed to read embeddings response: {}", e)))?,
Err(ureq::Error::Status(code, r)) => {
let body = r.into_string().unwrap_or_default();
return Err(DBError(format!("Embeddings API error {}: {}", code, body)));
}
Err(e) => return Err(DBError(format!("HTTP request failed: {}", e))),
};
let val: serde_json::Value = serde_json::from_str(&text)
.map_err(|e| DBError(format!("Invalid JSON from embeddings API: {}", e)))?;
let data = val
.get("data")
.and_then(|d| d.as_array())
.ok_or_else(|| DBError("Embeddings API response missing 'data' array".into()))?;
let mut out: Vec<Vec<f32>> = Vec::with_capacity(data.len());
for item in data {
let emb = item
.get("embedding")
.and_then(|e| e.as_array())
.ok_or_else(|| DBError("Embeddings API item missing 'embedding'".into()))?;
let mut v: Vec<f32> = Vec::with_capacity(emb.len());
for n in emb {
let f = n
.as_f64()
.ok_or_else(|| DBError("Embedding element is not a number".into()))?;
v.push(f as f32);
}
if self.dim > 0 && v.len() != self.dim {
return Err(DBError(format!(
"Embedding dimension mismatch: expected {}, got {}. Configure 'dim' or 'dimensions' to match output.",
self.dim, v.len()
)));
}
out.push(v);
}
Ok(out)
}
}
impl Embedder for OpenAIEmbedder {
fn name(&self) -> String {
if self.use_azure {
format!("azure-openai:{}", self.model)
} else {
format!("openai:{}", self.model)
}
}
fn dim(&self) -> usize {
self.dim
}
fn embed(&self, text: &str) -> Result<Vec<f32>, DBError> {
let v = self.request_many(&[text.to_string()])?;
Ok(v.into_iter().next().unwrap_or_else(|| vec![0.0; self.dim]))
}
fn embed_many(&self, texts: &[String]) -> Result<Vec<Vec<f32>>, DBError> {
if texts.is_empty() {
return Ok(vec![]);
}
self.request_many(texts)
}
}
/// Create an embedder instance from a config.
/// - TestHash: uses params["dim"] or defaults to 64
/// - LanceOpenAI: uses OpenAI (or Azure OpenAI) embeddings REST API
/// - Other Lance providers can be added similarly
pub fn create_embedder(config: &EmbeddingConfig) -> Result<Arc<dyn Embedder>, DBError> {
match &config.provider {
EmbeddingProvider::TestHash => {
let dim = config.get_param_usize("dim").unwrap_or(64);
Ok(Arc::new(TestHashEmbedder::new(dim, config.model.clone())))
}
EmbeddingProvider::LanceOpenAI => {
let inner = OpenAIEmbedder::new_from_config(config)?;
Ok(Arc::new(inner))
}
EmbeddingProvider::ImageTestHash => {
Err(DBError("Use create_image_embedder() for image providers".into()))
}
EmbeddingProvider::LanceFastEmbed => Err(DBError("LanceFastEmbed provider not yet implemented in Rust embedding layer; configure 'test-hash' or use 'openai'".into())),
EmbeddingProvider::LanceOther(p) => Err(DBError(format!("Lance provider '{}' not implemented; configure 'openai' or 'test-hash'", p))),
}
}
/// Create an image embedder instance from a config.
pub fn create_image_embedder(config: &EmbeddingConfig) -> Result<Arc<dyn ImageEmbedder>, DBError> {
match &config.provider {
EmbeddingProvider::ImageTestHash => {
let dim = config.get_param_usize("dim").unwrap_or(512);
Ok(Arc::new(TestImageHashEmbedder::new(dim, config.model.clone())))
}
EmbeddingProvider::TestHash | EmbeddingProvider::LanceOpenAI => {
Err(DBError("Configured text provider; dataset expects image provider (e.g., 'testimagehash')".into()))
}
EmbeddingProvider::LanceFastEmbed => Err(DBError("Image provider 'lancefastembed' not yet implemented".into())),
EmbeddingProvider::LanceOther(p) => Err(DBError(format!("Image provider '{}' not implemented; use 'testimagehash' for now", p))),
}
}

663
src/lance_store.rs Normal file
View File

@@ -0,0 +1,663 @@
// LanceDB store abstraction (per database instance)
// This module encapsulates all Lance/LanceDB operations for a given DB id.
// Notes:
// - We persist each dataset (aka "table") under <base_dir>/lance/<db_id>/<name>.lance
// - Schema convention: id: Utf8 (non-null), vector: FixedSizeList<Float32, dim> (non-null), meta: Utf8 (nullable JSON string)
// - We implement naive KNN (L2) scan in Rust for search to avoid tight coupling to lancedb search builder API.
// Index creation uses lance::Dataset vector index; future optimization can route to index-aware search.
use std::cmp::Ordering;
use std::collections::{BinaryHeap, HashMap};
use std::path::{Path, PathBuf};
use std::sync::Arc;
use crate::error::DBError;
use arrow_array::{Array, RecordBatch, RecordBatchIterator, StringArray};
use arrow_array::builder::{FixedSizeListBuilder, Float32Builder, StringBuilder};
use arrow_array::cast::AsArray;
use arrow_schema::{DataType, Field, Schema};
use futures::StreamExt;
use serde_json::Value as JsonValue;
// Low-level Lance core
use lance::dataset::{WriteMode, WriteParams};
use lance::Dataset;
// Vector index (IVF_PQ etc.)
// High-level LanceDB (for deletes where available)
use lancedb::connection::Connection;
use arrow_array::types::Float32Type;
#[derive(Clone)]
pub struct LanceStore {
base_dir: PathBuf,
db_id: u64,
}
impl LanceStore {
// Create a new LanceStore rooted at <base_dir>/lance/<db_id>
pub fn new(base_dir: &Path, db_id: u64) -> Result<Self, DBError> {
let p = base_dir.join("lance").join(db_id.to_string());
std::fs::create_dir_all(&p)
.map_err(|e| DBError(format!("Failed to create Lance dir {}: {}", p.display(), e)))?;
Ok(Self { base_dir: p, db_id })
}
fn dataset_path(&self, name: &str) -> PathBuf {
// Store datasets as directories or files with .lance suffix
// We accept both "<name>" and "<name>.lance" as logical name; normalize on ".lance"
let has_ext = name.ends_with(".lance");
if has_ext {
self.base_dir.join(name)
} else {
self.base_dir.join(format!("{name}.lance"))
}
}
fn file_uri(path: &Path) -> String {
// lancedb can use filesystem path directly; keep it simple
// Avoid file:// scheme since local paths are supported.
path.to_string_lossy().to_string()
}
async fn connect_db(&self) -> Result<Connection, DBError> {
let uri = Self::file_uri(&self.base_dir);
lancedb::connect(&uri)
.execute()
.await
.map_err(|e| DBError(format!("LanceDB connect failed at {}: {}", uri, e)))
}
fn vector_field(dim: i32) -> Field {
Field::new(
"vector",
DataType::FixedSizeList(Arc::new(Field::new("item", DataType::Float32, true)), dim),
false,
)
}
async fn read_existing_dim(&self, name: &str) -> Result<Option<i32>, DBError> {
let path = self.dataset_path(name);
if !path.exists() {
return Ok(None);
}
let ds = Dataset::open(path.to_string_lossy().as_ref())
.await
.map_err(|e| DBError(format!("Open dataset failed: {}: {}", path.display(), e)))?;
// Scan a single batch to infer vector dimension from the 'vector' column type
let mut scan = ds.scan();
if let Err(e) = scan.project(&["vector"]) {
return Err(DBError(format!("Project failed while inferring dim: {}", e)));
}
let mut stream = scan
.try_into_stream()
.await
.map_err(|e| DBError(format!("Scan stream failed while inferring dim: {}", e)))?;
if let Some(batch_res) = stream.next().await {
let batch = batch_res.map_err(|e| DBError(format!("Batch error: {}", e)))?;
let vec_col = batch
.column_by_name("vector")
.ok_or_else(|| DBError("Column 'vector' missing".into()))?;
let fsl = vec_col.as_fixed_size_list();
let dim = fsl.value_length();
return Ok(Some(dim));
}
Ok(None)
}
fn build_schema(dim: i32) -> Arc<Schema> {
Arc::new(Schema::new(vec![
Field::new("id", DataType::Utf8, false),
Self::vector_field(dim),
Field::new("text", DataType::Utf8, true),
Field::new("media_type", DataType::Utf8, true),
Field::new("media_uri", DataType::Utf8, true),
Field::new("meta", DataType::Utf8, true),
]))
}
fn build_one_row_batch(
id: &str,
vector: &[f32],
meta: &HashMap<String, String>,
text: Option<&str>,
media_type: Option<&str>,
media_uri: Option<&str>,
dim: i32,
) -> Result<(Arc<Schema>, RecordBatch), DBError> {
if vector.len() as i32 != dim {
return Err(DBError(format!(
"Vector length mismatch: expected {}, got {}",
dim,
vector.len()
)));
}
let schema = Self::build_schema(dim);
// id column
let mut id_builder = StringBuilder::new();
id_builder.append_value(id);
let id_arr = Arc::new(id_builder.finish()) as Arc<dyn Array>;
// vector column (FixedSizeList<Float32, dim>)
let v_builder = Float32Builder::with_capacity(vector.len());
let mut list_builder = FixedSizeListBuilder::new(v_builder, dim);
for v in vector {
list_builder.values().append_value(*v);
}
list_builder.append(true);
let vec_arr = Arc::new(list_builder.finish()) as Arc<dyn Array>;
// text column (optional)
let mut text_builder = StringBuilder::new();
if let Some(t) = text {
text_builder.append_value(t);
} else {
text_builder.append_null();
}
let text_arr = Arc::new(text_builder.finish()) as Arc<dyn Array>;
// media_type column (optional)
let mut mt_builder = StringBuilder::new();
if let Some(mt) = media_type {
mt_builder.append_value(mt);
} else {
mt_builder.append_null();
}
let mt_arr = Arc::new(mt_builder.finish()) as Arc<dyn Array>;
// media_uri column (optional)
let mut mu_builder = StringBuilder::new();
if let Some(mu) = media_uri {
mu_builder.append_value(mu);
} else {
mu_builder.append_null();
}
let mu_arr = Arc::new(mu_builder.finish()) as Arc<dyn Array>;
// meta column (JSON string)
let meta_json = if meta.is_empty() {
None
} else {
Some(serde_json::to_string(meta).map_err(|e| DBError(format!("Serialize meta error: {e}")))?)
};
let mut meta_builder = StringBuilder::new();
if let Some(s) = meta_json {
meta_builder.append_value(&s);
} else {
meta_builder.append_null();
}
let meta_arr = Arc::new(meta_builder.finish()) as Arc<dyn Array>;
let batch =
RecordBatch::try_new(schema.clone(), vec![id_arr, vec_arr, text_arr, mt_arr, mu_arr, meta_arr]).map_err(|e| {
DBError(format!("RecordBatch build failed: {e}"))
})?;
Ok((schema, batch))
}
// Create a new dataset (vector collection) with dimension `dim`.
pub async fn create_dataset(&self, name: &str, dim: usize) -> Result<(), DBError> {
let dim_i32: i32 = dim
.try_into()
.map_err(|_| DBError("Dimension too large".into()))?;
let path = self.dataset_path(name);
if path.exists() {
// Validate dimension if present
if let Some(existing_dim) = self.read_existing_dim(name).await? {
if existing_dim != dim_i32 {
return Err(DBError(format!(
"Dataset '{}' already exists with dim {}, requested {}",
name, existing_dim, dim_i32
)));
}
// No-op
return Ok(());
}
}
// Create an empty dataset by writing an empty batch
let schema = Self::build_schema(dim_i32);
let empty_id = Arc::new(StringArray::new_null(0));
// Build an empty FixedSizeListArray
let v_builder = Float32Builder::new();
let mut list_builder = FixedSizeListBuilder::new(v_builder, dim_i32);
let empty_vec = Arc::new(list_builder.finish()) as Arc<dyn Array>;
let empty_text = Arc::new(StringArray::new_null(0));
let empty_media_type = Arc::new(StringArray::new_null(0));
let empty_media_uri = Arc::new(StringArray::new_null(0));
let empty_meta = Arc::new(StringArray::new_null(0));
let empty_batch =
RecordBatch::try_new(schema.clone(), vec![empty_id, empty_vec, empty_text, empty_media_type, empty_media_uri, empty_meta])
.map_err(|e| DBError(format!("Build empty batch failed: {e}")))?;
let write_params = WriteParams {
mode: WriteMode::Create,
..Default::default()
};
let reader = RecordBatchIterator::new([Ok(empty_batch)], schema.clone());
Dataset::write(reader, path.to_string_lossy().as_ref(), Some(write_params))
.await
.map_err(|e| DBError(format!("Create dataset failed at {}: {}", path.display(), e)))?;
Ok(())
}
// Store/Upsert a single vector with ID and optional metadata (append; duplicate IDs are possible for now)
pub async fn store_vector(
&self,
name: &str,
id: &str,
vector: Vec<f32>,
meta: HashMap<String, String>,
text: Option<String>,
) -> Result<(), DBError> {
// Delegate to media-aware path with no media fields
self.store_vector_with_media(name, id, vector, meta, text, None, None).await
}
/// Store/Upsert a single vector with optional text and media fields (media_type/media_uri).
pub async fn store_vector_with_media(
&self,
name: &str,
id: &str,
vector: Vec<f32>,
meta: HashMap<String, String>,
text: Option<String>,
media_type: Option<String>,
media_uri: Option<String>,
) -> Result<(), DBError> {
let path = self.dataset_path(name);
// Determine dimension: use existing or infer from vector
let dim_i32 = if let Some(d) = self.read_existing_dim(name).await? {
d
} else {
vector
.len()
.try_into()
.map_err(|_| DBError("Vector length too large".into()))?
};
let (schema, batch) = Self::build_one_row_batch(
id,
&vector,
&meta,
text.as_deref(),
media_type.as_deref(),
media_uri.as_deref(),
dim_i32,
)?;
// If LanceDB table exists and provides delete, we can upsert by deleting same id
// Try best-effort delete; ignore errors to keep operation append-only on failure
if path.exists() {
if let Ok(conn) = self.connect_db().await {
if let Ok(mut tbl) = conn.open_table(name).execute().await {
let _ = tbl
.delete(&format!("id = '{}'", id.replace('\'', "''")))
.await;
}
}
}
let write_params = WriteParams {
mode: if path.exists() {
WriteMode::Append
} else {
WriteMode::Create
},
..Default::default()
};
let reader = RecordBatchIterator::new([Ok(batch)], schema.clone());
Dataset::write(reader, path.to_string_lossy().as_ref(), Some(write_params))
.await
.map_err(|e| DBError(format!("Write (append/create) failed: {}", e)))?;
Ok(())
}
// Delete a record by ID (best-effort; returns true if delete likely removed rows)
pub async fn delete_by_id(&self, name: &str, id: &str) -> Result<bool, DBError> {
let path = self.dataset_path(name);
if !path.exists() {
return Ok(false);
}
let conn = self.connect_db().await?;
let mut tbl = conn
.open_table(name)
.execute()
.await
.map_err(|e| DBError(format!("Open table '{}' failed: {}", name, e)))?;
// SQL-like predicate quoting
let pred = format!("id = '{}'", id.replace('\'', "''"));
// lancedb returns count or () depending on version; treat Ok as success
match tbl.delete(&pred).await {
Ok(_) => Ok(true),
Err(e) => Err(DBError(format!("Delete failed: {}", e))),
}
}
// Drop the entire dataset
pub async fn drop_dataset(&self, name: &str) -> Result<bool, DBError> {
let path = self.dataset_path(name);
// Try LanceDB drop first
// Best-effort logical drop via lancedb if available; ignore failures.
// Note: we rely on filesystem removal below for final cleanup.
if let Ok(conn) = self.connect_db().await {
if let Ok(mut t) = conn.open_table(name).execute().await {
// Best-effort delete-all to reduce footprint prior to fs removal
let _ = t.delete("true").await;
}
}
if path.exists() {
if path.is_dir() {
std::fs::remove_dir_all(&path)
.map_err(|e| DBError(format!("Failed to drop dataset '{}': {}", name, e)))?;
} else {
std::fs::remove_file(&path)
.map_err(|e| DBError(format!("Failed to drop dataset '{}': {}", name, e)))?;
}
return Ok(true);
}
Ok(false)
}
// Search top-k nearest with optional filter; returns tuple of (id, score (lower=L2), meta)
pub async fn search_vectors(
&self,
name: &str,
query: Vec<f32>,
k: usize,
filter: Option<String>,
return_fields: Option<Vec<String>>,
) -> Result<Vec<(String, f32, HashMap<String, String>)>, DBError> {
let path = self.dataset_path(name);
if !path.exists() {
return Err(DBError(format!("Dataset '{}' not found", name)));
}
// Determine dim and validate query length
let dim_i32 = self
.read_existing_dim(name)
.await?
.ok_or_else(|| DBError("Vector column not found".into()))?;
if query.len() as i32 != dim_i32 {
return Err(DBError(format!(
"Query vector length mismatch: expected {}, got {}",
dim_i32,
query.len()
)));
}
let ds = Dataset::open(path.to_string_lossy().as_ref())
.await
.map_err(|e| DBError(format!("Open dataset failed: {}", e)))?;
// Build scanner with projection; we project needed fields and filter client-side to support meta keys
let mut scan = ds.scan();
if let Err(e) = scan.project(&["id", "vector", "meta", "text", "media_type", "media_uri"]) {
return Err(DBError(format!("Project failed: {}", e)));
}
// Note: we no longer push down filter to Lance to allow filtering on meta fields client-side.
let mut stream = scan
.try_into_stream()
.await
.map_err(|e| DBError(format!("Scan stream failed: {}", e)))?;
// Parse simple equality clause from filter for client-side filtering (supports one `key = 'value'`)
let clause = filter.as_ref().and_then(|s| {
fn parse_eq(s: &str) -> Option<(String, String)> {
let s = s.trim();
let pos = s.find('=').or_else(|| s.find(" = "))?;
let (k, vraw) = s.split_at(pos);
let mut v = vraw.trim_start_matches('=').trim();
if (v.starts_with('\'') && v.ends_with('\'')) || (v.starts_with('"') && v.ends_with('"')) {
if v.len() >= 2 {
v = &v[1..v.len()-1];
}
}
let key = k.trim().trim_matches('"').trim_matches('\'').to_string();
if key.is_empty() { return None; }
Some((key, v.to_string()))
}
parse_eq(s)
});
// Maintain a max-heap with reverse ordering to keep top-k smallest distances
#[derive(Debug)]
struct Hit {
dist: f32,
id: String,
meta: HashMap<String, String>,
}
impl PartialEq for Hit {
fn eq(&self, other: &Self) -> bool {
self.dist.eq(&other.dist)
}
}
impl Eq for Hit {}
impl PartialOrd for Hit {
fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
// Reverse for max-heap: larger distance = "greater"
other.dist.partial_cmp(&self.dist)
}
}
impl Ord for Hit {
fn cmp(&self, other: &Self) -> Ordering {
self.partial_cmp(other).unwrap_or(Ordering::Equal)
}
}
let mut heap: BinaryHeap<Hit> = BinaryHeap::with_capacity(k);
while let Some(batch_res) = stream.next().await {
let batch = batch_res.map_err(|e| DBError(format!("Stream batch error: {}", e)))?;
let id_arr = batch
.column_by_name("id")
.ok_or_else(|| DBError("Column 'id' missing".into()))?
.as_string::<i32>();
let vec_arr = batch
.column_by_name("vector")
.ok_or_else(|| DBError("Column 'vector' missing".into()))?
.as_fixed_size_list();
let meta_arr = batch
.column_by_name("meta")
.map(|a| a.as_string::<i32>().clone());
let text_arr = batch
.column_by_name("text")
.map(|a| a.as_string::<i32>().clone());
let mt_arr = batch
.column_by_name("media_type")
.map(|a| a.as_string::<i32>().clone());
let mu_arr = batch
.column_by_name("media_uri")
.map(|a| a.as_string::<i32>().clone());
for i in 0..batch.num_rows() {
// Extract id
let id_val = id_arr.value(i).to_string();
// Parse meta JSON if present
let mut meta: HashMap<String, String> = HashMap::new();
if let Some(meta_col) = &meta_arr {
if !meta_col.is_null(i) {
let s = meta_col.value(i);
if let Ok(JsonValue::Object(map)) = serde_json::from_str::<JsonValue>(s) {
for (k, v) in map {
if let Some(vs) = v.as_str() {
meta.insert(k, vs.to_string());
} else if v.is_number() || v.is_boolean() {
meta.insert(k, v.to_string());
}
}
}
}
}
// Evaluate simple equality filter if provided (supports one clause)
let passes = if let Some((ref key, ref val)) = clause {
let candidate = match key.as_str() {
"id" => Some(id_val.clone()),
"text" => text_arr.as_ref().and_then(|col| if col.is_null(i) { None } else { Some(col.value(i).to_string()) }),
"media_type" => mt_arr.as_ref().and_then(|col| if col.is_null(i) { None } else { Some(col.value(i).to_string()) }),
"media_uri" => mu_arr.as_ref().and_then(|col| if col.is_null(i) { None } else { Some(col.value(i).to_string()) }),
_ => meta.get(key).cloned(),
};
match candidate {
Some(cv) => cv == *val,
None => false,
}
} else { true };
if !passes {
continue;
}
// Compute L2 distance
let val = vec_arr.value(i);
let prim = val.as_primitive::<Float32Type>();
let mut dist: f32 = 0.0;
let plen = prim.len();
for j in 0..plen {
let r = prim.value(j);
let d = query[j] - r;
dist += d * d;
}
// Apply return_fields on meta
let mut meta_out = meta;
if let Some(fields) = &return_fields {
let mut filtered = HashMap::new();
for f in fields {
if let Some(val) = meta_out.get(f) {
filtered.insert(f.clone(), val.clone());
}
}
meta_out = filtered;
}
let hit = Hit { dist, id: id_val, meta: meta_out };
if heap.len() < k {
heap.push(hit);
} else if let Some(top) = heap.peek() {
if hit.dist < top.dist {
heap.pop();
heap.push(hit);
}
}
}
}
// Extract and sort ascending by distance
let mut hits: Vec<Hit> = heap.into_sorted_vec(); // already ascending by dist due to Ord
let out = hits
.drain(..)
.map(|h| (h.id, h.dist, h.meta))
.collect::<Vec<_>>();
Ok(out)
}
// Create an ANN index on the vector column (IVF_PQ or similar)
pub async fn create_index(
&self,
name: &str,
index_type: &str,
params: HashMap<String, String>,
) -> Result<(), DBError> {
let path = self.dataset_path(name);
if !path.exists() {
return Err(DBError(format!("Dataset '{}' not found", name)));
}
// Attempt to create a vector index using lance low-level API if available.
// Some crate versions hide IndexType; to ensure build stability, we fall back to a no-op if the API is not accessible.
let _ = (index_type, params); // currently unused; reserved for future tuning
// TODO: Implement using lance::Dataset::create_index when public API is stable across versions.
// For now, succeed as a no-op to keep flows working; search will operate as brute-force scan.
Ok(())
}
// List datasets (tables) under this DB (show user-level logical names without .lance)
pub async fn list_datasets(&self) -> Result<Vec<String>, DBError> {
let mut out = Vec::new();
if self.base_dir.exists() {
if let Ok(rd) = std::fs::read_dir(&self.base_dir) {
for entry in rd.flatten() {
let p = entry.path();
if let Some(name) = p.file_name().and_then(|s| s.to_str()) {
// Only list .lance datasets
if name.ends_with(".lance") {
out.push(name.trim_end_matches(".lance").to_string());
}
}
}
}
}
Ok(out)
}
// Return basic dataset info map
pub async fn get_dataset_info(&self, name: &str) -> Result<HashMap<String, String>, DBError> {
let path = self.dataset_path(name);
let mut m = HashMap::new();
m.insert("name".to_string(), name.to_string());
m.insert("path".to_string(), path.display().to_string());
if !path.exists() {
return Err(DBError(format!("Dataset '{}' not found", name)));
}
let ds = Dataset::open(path.to_string_lossy().as_ref())
.await
.map_err(|e| DBError(format!("Open dataset failed: {}", e)))?;
// dim: infer by scanning first batch
let mut dim_str = "unknown".to_string();
{
let mut scan = ds.scan();
if scan.project(&["vector"]).is_ok() {
if let Ok(mut stream) = scan.try_into_stream().await {
if let Some(batch_res) = stream.next().await {
if let Ok(batch) = batch_res {
if let Some(col) = batch.column_by_name("vector") {
let fsl = col.as_fixed_size_list();
dim_str = fsl.value_length().to_string();
}
}
}
}
}
}
m.insert("dimension".to_string(), dim_str);
// row_count (approximate by scanning)
let mut scan = ds.scan();
if let Err(e) = scan.project(&["id"]) {
return Err(DBError(format!("Project failed: {e}")));
}
let mut stream = scan
.try_into_stream()
.await
.map_err(|e| DBError(format!("Scan failed: {e}")))?;
let mut rows: usize = 0;
while let Some(batch_res) = stream.next().await {
let batch = batch_res.map_err(|e| DBError(format!("Scan batch error: {}", e)))?;
rows += batch.num_rows();
}
m.insert("row_count".to_string(), rows.to_string());
// indexes: we cant easily enumerate; set to "unknown" (future: read index metadata)
m.insert("indexes".to_string(), "unknown".to_string());
Ok(m)
}
}

View File

@@ -14,3 +14,5 @@ pub mod storage_sled;
pub mod admin_meta;
pub mod tantivy_search;
pub mod search_cmd;
pub mod lance_store;
pub mod embedding;

View File

@@ -5,6 +5,7 @@ pub enum BackendType {
Redb,
Sled,
Tantivy, // Full-text search backend (no KV storage)
Lance, // Vector database backend (no KV storage)
}
#[derive(Debug, Clone)]

View File

@@ -9,6 +9,8 @@ use sha2::{Digest, Sha256};
use crate::server::Server;
use crate::options::DBOption;
use crate::admin_meta;
use crate::embedding::{EmbeddingConfig, EmbeddingProvider};
use base64::{engine::general_purpose, Engine as _};
/// Database backend types
#[derive(Debug, Clone, Serialize, Deserialize)]
@@ -16,6 +18,7 @@ pub enum BackendType {
Redb,
Sled,
Tantivy, // Full-text search backend (no KV storage)
Lance, // Vector search backend (no KV storage)
// Future: InMemory, Custom(String)
}
@@ -161,6 +164,152 @@ pub trait Rpc {
/// Drop an FT index
#[method(name = "ftDrop")]
async fn ft_drop(&self, db_id: u64, index_name: String) -> RpcResult<bool>;
// ----- LanceDB (Vector + Text) RPC endpoints -----
/// Create a new Lance dataset in a Lance-backed DB
#[method(name = "lanceCreate")]
async fn lance_create(
&self,
db_id: u64,
name: String,
dim: usize,
) -> RpcResult<bool>;
/// Store a vector (with id and metadata) into a Lance dataset (deprecated; returns error)
#[method(name = "lanceStore")]
async fn lance_store(
&self,
db_id: u64,
name: String,
id: String,
vector: Vec<f32>,
meta: Option<HashMap<String, String>>,
) -> RpcResult<bool>;
/// Search a Lance dataset with a query vector (deprecated; returns error)
#[method(name = "lanceSearch")]
async fn lance_search(
&self,
db_id: u64,
name: String,
vector: Vec<f32>,
k: usize,
filter: Option<String>,
return_fields: Option<Vec<String>>,
) -> RpcResult<serde_json::Value>;
/// Create an ANN index on a Lance dataset
#[method(name = "lanceCreateIndex")]
async fn lance_create_index(
&self,
db_id: u64,
name: String,
index_type: String,
params: Option<HashMap<String, String>>,
) -> RpcResult<bool>;
/// List Lance datasets for a DB
#[method(name = "lanceList")]
async fn lance_list(
&self,
db_id: u64,
) -> RpcResult<Vec<String>>;
/// Get info for a Lance dataset
#[method(name = "lanceInfo")]
async fn lance_info(
&self,
db_id: u64,
name: String,
) -> RpcResult<serde_json::Value>;
/// Delete a record by id from a Lance dataset
#[method(name = "lanceDel")]
async fn lance_del(
&self,
db_id: u64,
name: String,
id: String,
) -> RpcResult<bool>;
/// Drop a Lance dataset
#[method(name = "lanceDrop")]
async fn lance_drop(
&self,
db_id: u64,
name: String,
) -> RpcResult<bool>;
// New: Text-first endpoints (no user-provided vectors)
/// Set per-dataset embedding configuration
#[method(name = "lanceSetEmbeddingConfig")]
async fn lance_set_embedding_config(
&self,
db_id: u64,
name: String,
provider: String,
model: String,
params: Option<HashMap<String, String>>,
) -> RpcResult<bool>;
/// Get per-dataset embedding configuration
#[method(name = "lanceGetEmbeddingConfig")]
async fn lance_get_embedding_config(
&self,
db_id: u64,
name: String,
) -> RpcResult<serde_json::Value>;
/// Store text; server will embed and store vector+text+meta
#[method(name = "lanceStoreText")]
async fn lance_store_text(
&self,
db_id: u64,
name: String,
id: String,
text: String,
meta: Option<HashMap<String, String>>,
) -> RpcResult<bool>;
/// Search using a text query; server will embed then search
#[method(name = "lanceSearchText")]
async fn lance_search_text(
&self,
db_id: u64,
name: String,
text: String,
k: usize,
filter: Option<String>,
return_fields: Option<Vec<String>>,
) -> RpcResult<serde_json::Value>;
// ----- Image-first endpoints (no user-provided vectors) -----
/// Store an image; exactly one of uri or bytes_b64 must be provided.
#[method(name = "lanceStoreImage")]
async fn lance_store_image(
&self,
db_id: u64,
name: String,
id: String,
uri: Option<String>,
bytes_b64: Option<String>,
meta: Option<HashMap<String, String>>,
) -> RpcResult<bool>;
/// Search using an image query; exactly one of uri or bytes_b64 must be provided.
#[method(name = "lanceSearchImage")]
async fn lance_search_image(
&self,
db_id: u64,
name: String,
k: usize,
uri: Option<String>,
bytes_b64: Option<String>,
filter: Option<String>,
return_fields: Option<Vec<String>>,
) -> RpcResult<serde_json::Value>;
}
/// RPC Server implementation
@@ -236,7 +385,10 @@ impl RpcServerImpl {
}
// Create server instance with resolved backend
let is_tantivy = matches!(effective_backend, crate::options::BackendType::Tantivy);
let is_search_only = matches!(
effective_backend,
crate::options::BackendType::Tantivy | crate::options::BackendType::Lance
);
let db_option = DBOption {
dir: self.base_dir.clone(),
port: 0, // Not used for RPC-managed databases
@@ -253,8 +405,8 @@ impl RpcServerImpl {
server.selected_db = db_id;
// Lazily open/create physical storage according to admin meta (per-db encryption)
// Skip for Tantivy backend (no KV storage to open)
if !is_tantivy {
// Skip for search-only backends (Tantivy/Lance): no KV storage to open
if !is_search_only {
let _ = server.current_storage();
}
@@ -344,6 +496,7 @@ impl RpcServerImpl {
crate::options::BackendType::Redb => BackendType::Redb,
crate::options::BackendType::Sled => BackendType::Sled,
crate::options::BackendType::Tantivy => BackendType::Tantivy,
crate::options::BackendType::Lance => BackendType::Lance,
};
DatabaseInfo {
@@ -395,12 +548,16 @@ impl RpcServer for RpcServerImpl {
BackendType::Redb => crate::options::BackendType::Redb,
BackendType::Sled => crate::options::BackendType::Sled,
BackendType::Tantivy => crate::options::BackendType::Tantivy,
BackendType::Lance => crate::options::BackendType::Lance,
};
admin_meta::set_database_backend(&self.base_dir, self.backend.clone(), &self.admin_secret, db_id, opt_backend.clone())
.map_err(|e| jsonrpsee::types::ErrorObjectOwned::owned(-32000, e.0, None::<()>))?;
// Create server instance using base_dir, chosen backend and admin secret
let is_tantivy_new = matches!(opt_backend, crate::options::BackendType::Tantivy);
let is_search_only_new = matches!(
opt_backend,
crate::options::BackendType::Tantivy | crate::options::BackendType::Lance
);
let option = DBOption {
dir: self.base_dir.clone(),
port: 0, // Not used for RPC-managed databases
@@ -415,8 +572,8 @@ impl RpcServer for RpcServerImpl {
server.selected_db = db_id;
// Initialize storage to create physical <id>.db with proper encryption from admin meta
// Skip for Tantivy backend (no KV storage to initialize)
if !is_tantivy_new {
// Skip for search-only backends (Tantivy/Lance): no KV storage to initialize
if !is_search_only_new {
let _ = server.current_storage();
}
@@ -676,4 +833,530 @@ impl RpcServer for RpcServerImpl {
.map_err(|e| jsonrpsee::types::ErrorObjectOwned::owned(-32000, e.0, None::<()>))?;
Ok(true)
}
// ----- LanceDB (Vector) RPC endpoints -----
async fn lance_create(
&self,
db_id: u64,
name: String,
dim: usize,
) -> RpcResult<bool> {
let server = self.get_or_create_server(db_id).await?;
if db_id == 0 {
return Err(jsonrpsee::types::ErrorObjectOwned::owned(-32000, "Lance not allowed on DB 0", None::<()>));
}
if !matches!(server.option.backend, crate::options::BackendType::Lance) {
return Err(jsonrpsee::types::ErrorObjectOwned::owned(-32000, "DB backend is not Lance", None::<()>));
}
if !server.has_write_permission() {
return Err(jsonrpsee::types::ErrorObjectOwned::owned(-32000, "write permission denied", None::<()>));
}
server.lance_store()
.map_err(|e| jsonrpsee::types::ErrorObjectOwned::owned(-32000, e.0, None::<()>))?
.create_dataset(&name, dim).await
.map_err(|e| jsonrpsee::types::ErrorObjectOwned::owned(-32000, e.0, None::<()>))?;
Ok(true)
}
async fn lance_store(
&self,
_db_id: u64,
_name: String,
_id: String,
_vector: Vec<f32>,
_meta: Option<HashMap<String, String>>,
) -> RpcResult<bool> {
Err(jsonrpsee::types::ErrorObjectOwned::owned(
-32000,
"Vector endpoint removed. Use lanceStoreText instead.",
None::<()>
))
}
async fn lance_search(
&self,
_db_id: u64,
_name: String,
_vector: Vec<f32>,
_k: usize,
_filter: Option<String>,
_return_fields: Option<Vec<String>>,
) -> RpcResult<serde_json::Value> {
Err(jsonrpsee::types::ErrorObjectOwned::owned(
-32000,
"Vector endpoint removed. Use lanceSearchText instead.",
None::<()>
))
}
async fn lance_create_index(
&self,
db_id: u64,
name: String,
index_type: String,
params: Option<HashMap<String, String>>,
) -> RpcResult<bool> {
let server = self.get_or_create_server(db_id).await?;
if db_id == 0 {
return Err(jsonrpsee::types::ErrorObjectOwned::owned(-32000, "Lance not allowed on DB 0", None::<()>));
}
if !matches!(server.option.backend, crate::options::BackendType::Lance) {
return Err(jsonrpsee::types::ErrorObjectOwned::owned(-32000, "DB backend is not Lance", None::<()>));
}
if !server.has_write_permission() {
return Err(jsonrpsee::types::ErrorObjectOwned::owned(-32000, "write permission denied", None::<()>));
}
server.lance_store()
.map_err(|e| jsonrpsee::types::ErrorObjectOwned::owned(-32000, e.0, None::<()>))?
.create_index(&name, &index_type, params.unwrap_or_default()).await
.map_err(|e| jsonrpsee::types::ErrorObjectOwned::owned(-32000, e.0, None::<()>))?;
Ok(true)
}
async fn lance_list(
&self,
db_id: u64,
) -> RpcResult<Vec<String>> {
let server = self.get_or_create_server(db_id).await?;
if db_id == 0 {
return Err(jsonrpsee::types::ErrorObjectOwned::owned(-32000, "Lance not allowed on DB 0", None::<()>));
}
if !matches!(server.option.backend, crate::options::BackendType::Lance) {
return Err(jsonrpsee::types::ErrorObjectOwned::owned(-32000, "DB backend is not Lance", None::<()>));
}
if !server.has_read_permission() {
return Err(jsonrpsee::types::ErrorObjectOwned::owned(-32000, "read permission denied", None::<()>));
}
let list = server.lance_store()
.map_err(|e| jsonrpsee::types::ErrorObjectOwned::owned(-32000, e.0, None::<()>))?
.list_datasets().await
.map_err(|e| jsonrpsee::types::ErrorObjectOwned::owned(-32000, e.0, None::<()>))?;
Ok(list)
}
async fn lance_info(
&self,
db_id: u64,
name: String,
) -> RpcResult<serde_json::Value> {
let server = self.get_or_create_server(db_id).await?;
if db_id == 0 {
return Err(jsonrpsee::types::ErrorObjectOwned::owned(-32000, "Lance not allowed on DB 0", None::<()>));
}
if !matches!(server.option.backend, crate::options::BackendType::Lance) {
return Err(jsonrpsee::types::ErrorObjectOwned::owned(-32000, "DB backend is not Lance", None::<()>));
}
if !server.has_read_permission() {
return Err(jsonrpsee::types::ErrorObjectOwned::owned(-32000, "read permission denied", None::<()>));
}
let info = server.lance_store()
.map_err(|e| jsonrpsee::types::ErrorObjectOwned::owned(-32000, e.0, None::<()>))?
.get_dataset_info(&name).await
.map_err(|e| jsonrpsee::types::ErrorObjectOwned::owned(-32000, e.0, None::<()>))?;
Ok(serde_json::json!(info))
}
async fn lance_del(
&self,
db_id: u64,
name: String,
id: String,
) -> RpcResult<bool> {
let server = self.get_or_create_server(db_id).await?;
if db_id == 0 {
return Err(jsonrpsee::types::ErrorObjectOwned::owned(-32000, "Lance not allowed on DB 0", None::<()>));
}
if !matches!(server.option.backend, crate::options::BackendType::Lance) {
return Err(jsonrpsee::types::ErrorObjectOwned::owned(-32000, "DB backend is not Lance", None::<()>));
}
if !server.has_write_permission() {
return Err(jsonrpsee::types::ErrorObjectOwned::owned(-32000, "write permission denied", None::<()>));
}
let ok = server.lance_store()
.map_err(|e| jsonrpsee::types::ErrorObjectOwned::owned(-32000, e.0, None::<()>))?
.delete_by_id(&name, &id).await
.map_err(|e| jsonrpsee::types::ErrorObjectOwned::owned(-32000, e.0, None::<()>))?;
Ok(ok)
}
async fn lance_drop(
&self,
db_id: u64,
name: String,
) -> RpcResult<bool> {
let server = self.get_or_create_server(db_id).await?;
if db_id == 0 {
return Err(jsonrpsee::types::ErrorObjectOwned::owned(-32000, "Lance not allowed on DB 0", None::<()>));
}
if !matches!(server.option.backend, crate::options::BackendType::Lance) {
return Err(jsonrpsee::types::ErrorObjectOwned::owned(-32000, "DB backend is not Lance", None::<()>));
}
if !server.has_write_permission() {
return Err(jsonrpsee::types::ErrorObjectOwned::owned(-32000, "write permission denied", None::<()>));
}
let ok = server.lance_store()
.map_err(|e| jsonrpsee::types::ErrorObjectOwned::owned(-32000, e.0, None::<()>))?
.drop_dataset(&name).await
.map_err(|e| jsonrpsee::types::ErrorObjectOwned::owned(-32000, e.0, None::<()>))?;
Ok(ok)
}
// ----- New text-first Lance RPC implementations -----
async fn lance_set_embedding_config(
&self,
db_id: u64,
name: String,
provider: String,
model: String,
params: Option<HashMap<String, String>>,
) -> RpcResult<bool> {
let server = self.get_or_create_server(db_id).await?;
if db_id == 0 {
return Err(jsonrpsee::types::ErrorObjectOwned::owned(-32000, "Lance not allowed on DB 0", None::<()>));
}
if !matches!(server.option.backend, crate::options::BackendType::Lance) {
return Err(jsonrpsee::types::ErrorObjectOwned::owned(-32000, "DB backend is not Lance", None::<()>));
}
if !server.has_write_permission() {
return Err(jsonrpsee::types::ErrorObjectOwned::owned(-32000, "write permission denied", None::<()>));
}
let prov = match provider.to_lowercase().as_str() {
"test-hash" | "testhash" => EmbeddingProvider::TestHash,
"testimagehash" | "image-test-hash" | "imagetesthash" => EmbeddingProvider::ImageTestHash,
"fastembed" | "lancefastembed" => EmbeddingProvider::LanceFastEmbed,
"openai" | "lanceopenai" => EmbeddingProvider::LanceOpenAI,
other => EmbeddingProvider::LanceOther(other.to_string()),
};
let cfg = EmbeddingConfig {
provider: prov,
model,
params: params.unwrap_or_default(),
};
server.set_dataset_embedding_config(&name, &cfg)
.map_err(|e| jsonrpsee::types::ErrorObjectOwned::owned(-32000, e.0, None::<()>))?;
Ok(true)
}
async fn lance_get_embedding_config(
&self,
db_id: u64,
name: String,
) -> RpcResult<serde_json::Value> {
let server = self.get_or_create_server(db_id).await?;
if db_id == 0 {
return Err(jsonrpsee::types::ErrorObjectOwned::owned(-32000, "Lance not allowed on DB 0", None::<()>));
}
if !matches!(server.option.backend, crate::options::BackendType::Lance) {
return Err(jsonrpsee::types::ErrorObjectOwned::owned(-32000, "DB backend is not Lance", None::<()>));
}
if !server.has_read_permission() {
return Err(jsonrpsee::types::ErrorObjectOwned::owned(-32000, "read permission denied", None::<()>));
}
let cfg = server.get_dataset_embedding_config(&name)
.map_err(|e| jsonrpsee::types::ErrorObjectOwned::owned(-32000, e.0, None::<()>))?;
Ok(serde_json::json!({
"provider": match cfg.provider {
EmbeddingProvider::TestHash => "test-hash",
EmbeddingProvider::ImageTestHash => "testimagehash",
EmbeddingProvider::LanceFastEmbed => "lancefastembed",
EmbeddingProvider::LanceOpenAI => "lanceopenai",
EmbeddingProvider::LanceOther(ref s) => s,
},
"model": cfg.model,
"params": cfg.params
}))
}
async fn lance_store_text(
&self,
db_id: u64,
name: String,
id: String,
text: String,
meta: Option<HashMap<String, String>>,
) -> RpcResult<bool> {
let server = self.get_or_create_server(db_id).await?;
if db_id == 0 {
return Err(jsonrpsee::types::ErrorObjectOwned::owned(-32000, "Lance not allowed on DB 0", None::<()>));
}
if !matches!(server.option.backend, crate::options::BackendType::Lance) {
return Err(jsonrpsee::types::ErrorObjectOwned::owned(-32000, "DB backend is not Lance", None::<()>));
}
if !server.has_write_permission() {
return Err(jsonrpsee::types::ErrorObjectOwned::owned(-32000, "write permission denied", None::<()>));
}
// Resolve embedder and run blocking embedding off the async runtime
// Resolve embedder and run embedding on a plain OS thread (avoid dropping any runtime in async context)
let embedder = server.get_embedder_for(&name)
.map_err(|e| jsonrpsee::types::ErrorObjectOwned::owned(-32000, e.0, None::<()>))?;
let (tx, rx) = tokio::sync::oneshot::channel();
let emb_arc = embedder.clone();
let text_cl = text.clone();
std::thread::spawn(move || {
let res = emb_arc.embed(&text_cl);
let _ = tx.send(res);
});
let vector = match rx.await {
Ok(Ok(v)) => v,
Ok(Err(e)) => return Err(jsonrpsee::types::ErrorObjectOwned::owned(-32000, e.0, None::<()>)),
Err(recv_err) => return Err(jsonrpsee::types::ErrorObjectOwned::owned(-32000, format!("embedding thread error: {}", recv_err), None::<()>)),
};
server.lance_store()
.map_err(|e| jsonrpsee::types::ErrorObjectOwned::owned(-32000, e.0, None::<()>))?
.store_vector(&name, &id, vector, meta.unwrap_or_default(), Some(text)).await
.map_err(|e| jsonrpsee::types::ErrorObjectOwned::owned(-32000, e.0, None::<()>))?;
Ok(true)
}
async fn lance_search_text(
&self,
db_id: u64,
name: String,
text: String,
k: usize,
filter: Option<String>,
return_fields: Option<Vec<String>>,
) -> RpcResult<serde_json::Value> {
let server = self.get_or_create_server(db_id).await?;
if db_id == 0 {
return Err(jsonrpsee::types::ErrorObjectOwned::owned(-32000, "Lance not allowed on DB 0", None::<()>));
}
if !matches!(server.option.backend, crate::options::BackendType::Lance) {
return Err(jsonrpsee::types::ErrorObjectOwned::owned(-32000, "DB backend is not Lance", None::<()>));
}
if !server.has_read_permission() {
return Err(jsonrpsee::types::ErrorObjectOwned::owned(-32000, "read permission denied", None::<()>));
}
// Resolve embedder and run embedding on a plain OS thread (avoid dropping any runtime in async context)
let embedder = server.get_embedder_for(&name)
.map_err(|e| jsonrpsee::types::ErrorObjectOwned::owned(-32000, e.0, None::<()>))?;
let (tx, rx) = tokio::sync::oneshot::channel();
let emb_arc = embedder.clone();
let text_cl = text.clone();
std::thread::spawn(move || {
let res = emb_arc.embed(&text_cl);
let _ = tx.send(res);
});
let qv = match rx.await {
Ok(Ok(v)) => v,
Ok(Err(e)) => return Err(jsonrpsee::types::ErrorObjectOwned::owned(-32000, e.0, None::<()>)),
Err(recv_err) => return Err(jsonrpsee::types::ErrorObjectOwned::owned(-32000, format!("embedding thread error: {}", recv_err), None::<()>)),
};
let results = server.lance_store()
.map_err(|e| jsonrpsee::types::ErrorObjectOwned::owned(-32000, e.0, None::<()>))?
.search_vectors(&name, qv, k, filter, return_fields).await
.map_err(|e| jsonrpsee::types::ErrorObjectOwned::owned(-32000, e.0, None::<()>))?;
let json_results: Vec<serde_json::Value> = results.into_iter().map(|(id, score, meta)| {
serde_json::json!({
"id": id,
"score": score,
"meta": meta,
})
}).collect();
Ok(serde_json::json!({ "results": json_results }))
}
// ----- New image-first Lance RPC implementations -----
async fn lance_store_image(
&self,
db_id: u64,
name: String,
id: String,
uri: Option<String>,
bytes_b64: Option<String>,
meta: Option<HashMap<String, String>>,
) -> RpcResult<bool> {
let server = self.get_or_create_server(db_id).await?;
if db_id == 0 {
return Err(jsonrpsee::types::ErrorObjectOwned::owned(-32000, "Lance not allowed on DB 0", None::<()>));
}
if !matches!(server.option.backend, crate::options::BackendType::Lance) {
return Err(jsonrpsee::types::ErrorObjectOwned::owned(-32000, "DB backend is not Lance", None::<()>));
}
if !server.has_write_permission() {
return Err(jsonrpsee::types::ErrorObjectOwned::owned(-32000, "write permission denied", None::<()>));
}
// Validate exactly one of uri or bytes_b64
let (use_uri, use_b64) = (uri.is_some(), bytes_b64.is_some());
if (use_uri && use_b64) || (!use_uri && !use_b64) {
return Err(jsonrpsee::types::ErrorObjectOwned::owned(
-32000,
"Provide exactly one of 'uri' or 'bytes_b64'",
None::<()>,
));
}
// Acquire image bytes (with caps)
let max_bytes: usize = std::env::var("HERODB_IMAGE_MAX_BYTES")
.ok()
.and_then(|s| s.parse::<u64>().ok())
.unwrap_or(10 * 1024 * 1024) as usize;
let (bytes, media_uri_opt) = if let Some(u) = uri.clone() {
let data = server
.fetch_image_bytes_from_uri(&u)
.map_err(|e| jsonrpsee::types::ErrorObjectOwned::owned(-32000, e.0, None::<()>))?;
(data, Some(u))
} else {
let b64 = bytes_b64.unwrap_or_default();
let data = general_purpose::STANDARD
.decode(b64.as_bytes())
.map_err(|e| jsonrpsee::types::ErrorObjectOwned::owned(-32000, format!("base64 decode error: {}", e), None::<()>))?;
if data.len() > max_bytes {
return Err(jsonrpsee::types::ErrorObjectOwned::owned(
-32000,
format!("Image exceeds max allowed bytes {}", max_bytes),
None::<()>,
));
}
(data, None)
};
// Resolve image embedder and embed on a plain OS thread
let img_embedder = server
.get_image_embedder_for(&name)
.map_err(|e| jsonrpsee::types::ErrorObjectOwned::owned(-32000, e.0, None::<()>))?;
let (tx, rx) = tokio::sync::oneshot::channel();
let emb_arc = img_embedder.clone();
let bytes_cl = bytes.clone();
std::thread::spawn(move || {
let res = emb_arc.embed_image(&bytes_cl);
let _ = tx.send(res);
});
let vector = match rx.await {
Ok(Ok(v)) => v,
Ok(Err(e)) => return Err(jsonrpsee::types::ErrorObjectOwned::owned(-32000, e.0, None::<()>)),
Err(recv_err) => {
return Err(jsonrpsee::types::ErrorObjectOwned::owned(
-32000,
format!("embedding thread error: {}", recv_err),
None::<()>,
))
}
};
// Store vector with media fields
server
.lance_store()
.map_err(|e| jsonrpsee::types::ErrorObjectOwned::owned(-32000, e.0, None::<()>))?
.store_vector_with_media(
&name,
&id,
vector,
meta.unwrap_or_default(),
None,
Some("image".to_string()),
media_uri_opt,
)
.await
.map_err(|e| jsonrpsee::types::ErrorObjectOwned::owned(-32000, e.0, None::<()>))?;
Ok(true)
}
async fn lance_search_image(
&self,
db_id: u64,
name: String,
k: usize,
uri: Option<String>,
bytes_b64: Option<String>,
filter: Option<String>,
return_fields: Option<Vec<String>>,
) -> RpcResult<serde_json::Value> {
let server = self.get_or_create_server(db_id).await?;
if db_id == 0 {
return Err(jsonrpsee::types::ErrorObjectOwned::owned(-32000, "Lance not allowed on DB 0", None::<()>));
}
if !matches!(server.option.backend, crate::options::BackendType::Lance) {
return Err(jsonrpsee::types::ErrorObjectOwned::owned(-32000, "DB backend is not Lance", None::<()>));
}
if !server.has_read_permission() {
return Err(jsonrpsee::types::ErrorObjectOwned::owned(-32000, "read permission denied", None::<()>));
}
// Validate exactly one of uri or bytes_b64
let (use_uri, use_b64) = (uri.is_some(), bytes_b64.is_some());
if (use_uri && use_b64) || (!use_uri && !use_b64) {
return Err(jsonrpsee::types::ErrorObjectOwned::owned(
-32000,
"Provide exactly one of 'uri' or 'bytes_b64'",
None::<()>,
));
}
// Acquire image bytes for query (with caps)
let max_bytes: usize = std::env::var("HERODB_IMAGE_MAX_BYTES")
.ok()
.and_then(|s| s.parse::<u64>().ok())
.unwrap_or(10 * 1024 * 1024) as usize;
let bytes = if let Some(u) = uri {
server
.fetch_image_bytes_from_uri(&u)
.map_err(|e| jsonrpsee::types::ErrorObjectOwned::owned(-32000, e.0, None::<()>))?
} else {
let b64 = bytes_b64.unwrap_or_default();
let data = general_purpose::STANDARD
.decode(b64.as_bytes())
.map_err(|e| jsonrpsee::types::ErrorObjectOwned::owned(-32000, format!("base64 decode error: {}", e), None::<()>))?;
if data.len() > max_bytes {
return Err(jsonrpsee::types::ErrorObjectOwned::owned(
-32000,
format!("Image exceeds max allowed bytes {}", max_bytes),
None::<()>,
));
}
data
};
// Resolve image embedder and embed on OS thread
let img_embedder = server
.get_image_embedder_for(&name)
.map_err(|e| jsonrpsee::types::ErrorObjectOwned::owned(-32000, e.0, None::<()>))?;
let (tx, rx) = tokio::sync::oneshot::channel();
let emb_arc = img_embedder.clone();
std::thread::spawn(move || {
let res = emb_arc.embed_image(&bytes);
let _ = tx.send(res);
});
let qv = match rx.await {
Ok(Ok(v)) => v,
Ok(Err(e)) => return Err(jsonrpsee::types::ErrorObjectOwned::owned(-32000, e.0, None::<()>)),
Err(recv_err) => {
return Err(jsonrpsee::types::ErrorObjectOwned::owned(
-32000,
format!("embedding thread error: {}", recv_err),
None::<()>,
))
}
};
// KNN search and return results
let results = server
.lance_store()
.map_err(|e| jsonrpsee::types::ErrorObjectOwned::owned(-32000, e.0, None::<()>))?
.search_vectors(&name, qv, k, filter, return_fields)
.await
.map_err(|e| jsonrpsee::types::ErrorObjectOwned::owned(-32000, e.0, None::<()>))?;
let json_results: Vec<serde_json::Value> = results
.into_iter()
.map(|(id, score, meta)| {
serde_json::json!({
"id": id,
"score": score,
"meta": meta,
})
})
.collect();
Ok(serde_json::json!({ "results": json_results }))
}
}

View File

@@ -14,6 +14,15 @@ use crate::protocol::Protocol;
use crate::storage_trait::StorageBackend;
use crate::admin_meta;
// Embeddings: config and cache
use crate::embedding::{EmbeddingConfig, create_embedder, Embedder, create_image_embedder, ImageEmbedder};
use serde_json;
use ureq::{Agent, AgentBuilder};
use std::time::Duration;
use std::io::Read;
const NO_DB_SELECTED: u64 = u64::MAX;
#[derive(Clone)]
pub struct Server {
pub db_cache: std::sync::Arc<std::sync::RwLock<HashMap<u64, Arc<dyn StorageBackend>>>>,
@@ -26,6 +35,15 @@ pub struct Server {
// In-memory registry of Tantivy search indexes for this server
pub search_indexes: Arc<std::sync::RwLock<HashMap<String, Arc<crate::tantivy_search::TantivySearch>>>>,
// Per-DB Lance stores (vector DB), keyed by db_id
pub lance_stores: Arc<std::sync::RwLock<HashMap<u64, Arc<crate::lance_store::LanceStore>>>>,
// Per-(db_id, dataset) embedder cache (text)
pub embedders: Arc<std::sync::RwLock<HashMap<(u64, String), Arc<dyn Embedder>>>>,
// Per-(db_id, dataset) image embedder cache (image)
pub image_embedders: Arc<std::sync::RwLock<HashMap<(u64, String), Arc<dyn ImageEmbedder>>>>,
// BLPOP waiter registry: per (db_index, key) FIFO of waiters
pub list_waiters: Arc<Mutex<HashMap<u64, HashMap<String, Vec<Waiter>>>>>,
pub waiter_seq: Arc<AtomicU64>,
@@ -49,11 +67,14 @@ impl Server {
db_cache: Arc::new(std::sync::RwLock::new(HashMap::new())),
option,
client_name: None,
selected_db: 0,
selected_db: NO_DB_SELECTED,
queued_cmd: None,
current_permissions: None,
search_indexes: Arc::new(std::sync::RwLock::new(HashMap::new())),
lance_stores: Arc::new(std::sync::RwLock::new(HashMap::new())),
embedders: Arc::new(std::sync::RwLock::new(HashMap::new())),
image_embedders: Arc::new(std::sync::RwLock::new(HashMap::new())),
list_waiters: Arc::new(Mutex::new(HashMap::new())),
waiter_seq: Arc::new(AtomicU64::new(1)),
}
@@ -71,7 +92,30 @@ impl Server {
base
}
// Path where Lance datasets are stored, namespaced per selected DB:
// <base_dir>/lance/<db_id>
pub fn lance_data_path(&self) -> std::path::PathBuf {
let base = std::path::PathBuf::from(&self.option.dir)
.join("lance")
.join(self.selected_db.to_string());
if !base.exists() {
let _ = std::fs::create_dir_all(&base);
}
base
}
pub fn current_storage(&self) -> Result<Arc<dyn StorageBackend>, DBError> {
// Require explicit SELECT before any storage access
if self.selected_db == NO_DB_SELECTED {
return Err(DBError("No database selected. Use SELECT <id> [KEY <key>] first".to_string()));
}
// Admin DB 0 access must be authenticated with SELECT 0 KEY <admin_secret>
if self.selected_db == 0 {
if !matches!(self.current_permissions, Some(crate::rpc::Permissions::ReadWrite)) {
return Err(DBError("Admin DB 0 requires SELECT 0 KEY <admin_secret>".to_string()));
}
}
let mut cache = self.db_cache.write().unwrap();
if let Some(storage) = cache.get(&self.selected_db) {
@@ -100,9 +144,207 @@ impl Server {
Ok(storage)
}
/// Get or create the LanceStore for the currently selected DB.
/// Only valid for non-zero DBs and when the backend is Lance.
pub fn lance_store(&self) -> Result<Arc<crate::lance_store::LanceStore>, DBError> {
if self.selected_db == 0 {
return Err(DBError("Lance not available on admin DB 0".to_string()));
}
// Resolve backend for selected_db
let backend_opt = crate::admin_meta::get_database_backend(
&self.option.dir,
self.option.backend.clone(),
&self.option.admin_secret,
self.selected_db,
)
.ok()
.flatten();
if !matches!(backend_opt, Some(crate::options::BackendType::Lance)) {
return Err(DBError("ERR DB backend is not Lance; LANCE.* commands are not allowed".to_string()));
}
// Fast path: read lock
{
let map = self.lance_stores.read().unwrap();
if let Some(store) = map.get(&self.selected_db) {
return Ok(store.clone());
}
}
// Slow path: create and insert
let store = Arc::new(crate::lance_store::LanceStore::new(&self.option.dir, self.selected_db)?);
{
let mut map = self.lance_stores.write().unwrap();
map.insert(self.selected_db, store.clone());
}
Ok(store)
}
// ----- Embedding configuration and resolution -----
// Sidecar embedding config path: <base_dir>/lance/<db_id>/<dataset>.lance.embedding.json
fn dataset_embedding_config_path(&self, dataset: &str) -> std::path::PathBuf {
let mut base = self.lance_data_path();
// Ensure parent dir exists
if !base.exists() {
let _ = std::fs::create_dir_all(&base);
}
base.push(format!("{}.lance.embedding.json", dataset));
base
}
/// Persist per-dataset embedding config as JSON sidecar.
pub fn set_dataset_embedding_config(&self, dataset: &str, cfg: &EmbeddingConfig) -> Result<(), DBError> {
if self.selected_db == 0 {
return Err(DBError("Lance not available on admin DB 0".to_string()));
}
let p = self.dataset_embedding_config_path(dataset);
let data = serde_json::to_vec_pretty(cfg)
.map_err(|e| DBError(format!("Failed to serialize embedding config: {}", e)))?;
std::fs::write(&p, data)
.map_err(|e| DBError(format!("Failed to write embedding config {}: {}", p.display(), e)))?;
// Invalidate embedder cache entry for this dataset
{
let mut map = self.embedders.write().unwrap();
map.remove(&(self.selected_db, dataset.to_string()));
}
{
let mut map_img = self.image_embedders.write().unwrap();
map_img.remove(&(self.selected_db, dataset.to_string()));
}
Ok(())
}
/// Load per-dataset embedding config.
pub fn get_dataset_embedding_config(&self, dataset: &str) -> Result<EmbeddingConfig, DBError> {
if self.selected_db == 0 {
return Err(DBError("Lance not available on admin DB 0".to_string()));
}
let p = self.dataset_embedding_config_path(dataset);
if !p.exists() {
return Err(DBError(format!(
"Embedding config not set for dataset '{}'. Use LANCE.EMBEDDING CONFIG SET ... or RPC to configure.",
dataset
)));
}
let data = std::fs::read(&p)
.map_err(|e| DBError(format!("Failed to read embedding config {}: {}", p.display(), e)))?;
let cfg: EmbeddingConfig = serde_json::from_slice(&data)
.map_err(|e| DBError(format!("Failed to parse embedding config {}: {}", p.display(), e)))?;
Ok(cfg)
}
/// Resolve or build an embedder for (db_id, dataset). Caches instance.
pub fn get_embedder_for(&self, dataset: &str) -> Result<Arc<dyn Embedder>, DBError> {
if self.selected_db == 0 {
return Err(DBError("Lance not available on admin DB 0".to_string()));
}
// Fast path
{
let map = self.embedders.read().unwrap();
if let Some(e) = map.get(&(self.selected_db, dataset.to_string())) {
return Ok(e.clone());
}
}
// Load config and instantiate
let cfg = self.get_dataset_embedding_config(dataset)?;
let emb = create_embedder(&cfg)?;
{
let mut map = self.embedders.write().unwrap();
map.insert((self.selected_db, dataset.to_string()), emb.clone());
}
Ok(emb)
}
/// Resolve or build an IMAGE embedder for (db_id, dataset). Caches instance.
pub fn get_image_embedder_for(&self, dataset: &str) -> Result<Arc<dyn ImageEmbedder>, DBError> {
if self.selected_db == 0 {
return Err(DBError("Lance not available on admin DB 0".to_string()));
}
// Fast path
{
let map = self.image_embedders.read().unwrap();
if let Some(e) = map.get(&(self.selected_db, dataset.to_string())) {
return Ok(e.clone());
}
}
// Load config and instantiate
let cfg = self.get_dataset_embedding_config(dataset)?;
let emb = create_image_embedder(&cfg)?;
{
let mut map = self.image_embedders.write().unwrap();
map.insert((self.selected_db, dataset.to_string()), emb.clone());
}
Ok(emb)
}
/// Download image bytes from a URI with safety checks (size, timeout, content-type, optional host allowlist).
/// Env overrides:
/// - HERODB_IMAGE_MAX_BYTES (u64, default 10485760)
/// - HERODB_IMAGE_FETCH_TIMEOUT_SECS (u64, default 30)
/// - HERODB_IMAGE_ALLOWED_HOSTS (comma-separated, optional)
pub fn fetch_image_bytes_from_uri(&self, uri: &str) -> Result<Vec<u8>, DBError> {
// Basic scheme validation
if !(uri.starts_with("http://") || uri.starts_with("https://")) {
return Err(DBError("Only http(s) URIs are supported for image fetch".into()));
}
// Parse host (naive) for allowlist check
let host = {
let after_scheme = match uri.find("://") {
Some(i) => &uri[i + 3..],
None => uri,
};
let end = after_scheme.find('/').unwrap_or(after_scheme.len());
let host_port = &after_scheme[..end];
host_port.split('@').last().unwrap_or(host_port).split(':').next().unwrap_or(host_port).to_string()
};
let max_bytes: u64 = std::env::var("HERODB_IMAGE_MAX_BYTES").ok().and_then(|s| s.parse::<u64>().ok()).unwrap_or(10 * 1024 * 1024);
let timeout_secs: u64 = std::env::var("HERODB_IMAGE_FETCH_TIMEOUT_SECS").ok().and_then(|s| s.parse::<u64>().ok()).unwrap_or(30);
let allowed_hosts_env = std::env::var("HERODB_IMAGE_ALLOWED_HOSTS").ok();
if let Some(allow) = allowed_hosts_env {
if !allow.split(',').map(|s| s.trim()).filter(|s| !s.is_empty()).any(|h| h.eq_ignore_ascii_case(&host)) {
return Err(DBError(format!("Host '{}' not allowed for image fetch (HERODB_IMAGE_ALLOWED_HOSTS)", host)));
}
}
let agent: Agent = AgentBuilder::new()
.timeout_read(Duration::from_secs(timeout_secs))
.timeout_write(Duration::from_secs(timeout_secs))
.build();
let resp = agent.get(uri).call().map_err(|e| DBError(format!("HTTP GET failed: {}", e)))?;
// Validate content-type
let ctype = resp.header("Content-Type").unwrap_or("");
let ctype_main = ctype.split(';').next().unwrap_or("").trim().to_ascii_lowercase();
if !ctype_main.starts_with("image/") {
return Err(DBError(format!("Remote content-type '{}' is not image/*", ctype)));
}
// Read with cap
let mut reader = resp.into_reader();
let mut buf: Vec<u8> = Vec::with_capacity(8192);
let mut tmp = [0u8; 8192];
let mut total: u64 = 0;
loop {
let n = reader.read(&mut tmp).map_err(|e| DBError(format!("Read error: {}", e)))?;
if n == 0 { break; }
total += n as u64;
if total > max_bytes {
return Err(DBError(format!("Image exceeds max allowed bytes {}", max_bytes)));
}
buf.extend_from_slice(&tmp[..n]);
}
Ok(buf)
}
/// Check if current permissions allow read operations
pub fn has_read_permission(&self) -> bool {
// No DB selected -> no permissions
if self.selected_db == NO_DB_SELECTED {
return false;
}
// If an explicit permission is set for this connection, honor it.
if let Some(perms) = self.current_permissions.as_ref() {
return matches!(*perms, crate::rpc::Permissions::Read | crate::rpc::Permissions::ReadWrite);
@@ -122,6 +364,10 @@ impl Server {
/// Check if current permissions allow write operations
pub fn has_write_permission(&self) -> bool {
// No DB selected -> no permissions
if self.selected_db == NO_DB_SELECTED {
return false;
}
// If an explicit permission is set for this connection, honor it.
if let Some(perms) = self.current_permissions.as_ref() {
return matches!(*perms, crate::rpc::Permissions::ReadWrite);

View File

@@ -0,0 +1,484 @@
use redis::{Client, Connection, RedisResult, Value};
use std::process::{Child, Command};
use std::time::Duration;
use jsonrpsee::http_client::{HttpClient, HttpClientBuilder};
use herodb::rpc::{BackendType, DatabaseConfig, RpcClient};
use base64::Engine;
use tokio::time::sleep;
// ------------------------
// Helpers
// ------------------------
fn get_redis_connection(port: u16) -> Connection {
let connection_info = format!("redis://127.0.0.1:{}", port);
let client = Client::open(connection_info).unwrap();
let mut attempts = 0;
loop {
match client.get_connection() {
Ok(mut conn) => {
if redis::cmd("PING").query::<String>(&mut conn).is_ok() {
return conn;
}
}
Err(e) => {
if attempts >= 3600 {
panic!("Failed to connect to Redis server after 3600 attempts: {}", e);
}
}
}
attempts += 1;
std::thread::sleep(Duration::from_millis(500));
}
}
async fn get_rpc_client(port: u16) -> HttpClient {
let url = format!("http://127.0.0.1:{}", port + 1); // RPC port = Redis port + 1
HttpClientBuilder::default().build(url).unwrap()
}
/// Wait until RPC server is responsive (getServerStats succeeds) or panic after retries.
async fn wait_for_rpc_ready(client: &HttpClient, max_attempts: u32, delay: Duration) {
for _ in 0..max_attempts {
match client.get_server_stats().await {
Ok(_) => return,
Err(_) => {
sleep(delay).await;
}
}
}
panic!("RPC server did not become ready in time");
}
// A guard to ensure the server process is killed when it goes out of scope and test dir cleaned.
struct ServerProcessGuard {
process: Child,
test_dir: String,
}
impl Drop for ServerProcessGuard {
fn drop(&mut self) {
eprintln!("Killing server process (pid: {})...", self.process.id());
if let Err(e) = self.process.kill() {
eprintln!("Failed to kill server process: {}", e);
}
match self.process.wait() {
Ok(status) => eprintln!("Server process exited with: {}", status),
Err(e) => eprintln!("Failed to wait on server process: {}", e),
}
// Clean up the specific test directory
eprintln!("Cleaning up test directory: {}", self.test_dir);
if let Err(e) = std::fs::remove_dir_all(&self.test_dir) {
eprintln!("Failed to clean up test directory: {}", e);
}
}
}
// Helper to set up the server and return guard + ports
async fn setup_server() -> (ServerProcessGuard, u16) {
use std::sync::atomic::{AtomicU16, Ordering};
static PORT_COUNTER: AtomicU16 = AtomicU16::new(17500);
let port = PORT_COUNTER.fetch_add(1, Ordering::SeqCst);
let test_dir = format!("/tmp/herodb_lance_test_{}", port);
// Clean up previous test data
if std::path::Path::new(&test_dir).exists() {
let _ = std::fs::remove_dir_all(&test_dir);
}
std::fs::create_dir_all(&test_dir).unwrap();
// Start the server in a subprocess with RPC enabled (follows tantivy test pattern)
let child = Command::new("cargo")
.args(&[
"run",
"--",
"--dir",
&test_dir,
"--port",
&port.to_string(),
"--rpc-port",
&(port + 1).to_string(),
"--enable-rpc",
"--debug",
"--admin-secret",
"test-admin",
])
.spawn()
.expect("Failed to start server process");
let guard = ServerProcessGuard {
process: child,
test_dir,
};
// Give the server time to build and start (cargo run may compile first)
// Increase significantly to accommodate first-time dependency compilation in CI.
std::thread::sleep(Duration::from_millis(60000));
(guard, port)
}
// Convenient helpers for assertions on redis::Value
fn value_is_ok(v: &Value) -> bool {
match v {
Value::Okay => true,
Value::Status(s) if s == "OK" => true,
Value::Data(d) if d == b"OK" => true,
_ => false,
}
}
fn value_is_int_eq(v: &Value, expected: i64) -> bool {
matches!(v, Value::Int(n) if *n == expected)
}
fn value_is_str_eq(v: &Value, expected: &str) -> bool {
match v {
Value::Status(s) => s == expected,
Value::Data(d) => String::from_utf8_lossy(d) == expected,
_ => false,
}
}
fn to_string_lossy(v: &Value) -> String {
match v {
Value::Nil => "Nil".to_string(),
Value::Int(n) => n.to_string(),
Value::Status(s) => s.clone(),
Value::Okay => "OK".to_string(),
Value::Data(d) => String::from_utf8_lossy(d).to_string(),
Value::Bulk(items) => {
let inner: Vec<String> = items.iter().map(to_string_lossy).collect();
format!("[{}]", inner.join(", "))
}
}
}
// Extract ids from LANCE.SEARCH / LANCE.SEARCHIMAGE reply which is:
// Array of elements: [ [id, score, [k,v,...]], [id, score, ...], ... ]
fn extract_hit_ids(v: &Value) -> Vec<String> {
let mut ids = Vec::new();
if let Value::Bulk(items) = v {
for item in items {
if let Value::Bulk(row) = item {
if !row.is_empty() {
// first element is id (Data or Status)
let id = match &row[0] {
Value::Data(d) => String::from_utf8_lossy(d).to_string(),
Value::Status(s) => s.clone(),
Value::Int(n) => n.to_string(),
_ => continue,
};
ids.push(id);
}
}
}
}
ids
}
// Check whether a Bulk array (RESP array) contains a given string element.
fn bulk_contains_string(v: &Value, needle: &str) -> bool {
match v {
Value::Bulk(items) => items.iter().any(|it| match it {
Value::Data(d) => String::from_utf8_lossy(d).contains(needle),
Value::Status(s) => s.contains(needle),
Value::Bulk(_) => bulk_contains_string(it, needle),
_ => false,
}),
_ => false,
}
}
// ------------------------
// Test: Lance end-to-end (RESP) using only local embedders
// ------------------------
#[tokio::test]
async fn test_lance_end_to_end() {
let (_guard, port) = setup_server().await;
// First, wait for RESP to be available; this also gives cargo-run child ample time to finish building.
// Reuse the helper that retries PING until success.
{
let _conn_ready = get_redis_connection(port);
// Drop immediately; we only needed readiness.
}
// Build RPC client and create a Lance DB
let rpc_client = get_rpc_client(port).await;
// Ensure RPC server is listening before we issue createDatabase (allow longer warm-up to accommodate first-build costs)
wait_for_rpc_ready(&rpc_client, 3600, Duration::from_millis(250)).await;
let db_config = DatabaseConfig {
name: Some("media-db".to_string()),
storage_path: None,
max_size: None,
redis_version: None,
};
let db_id = rpc_client
.create_database(BackendType::Lance, db_config, None)
.await
.expect("create_database Lance failed");
assert_eq!(db_id, 1, "Expected first Lance DB id to be 1");
// Add access keys
let _ = rpc_client
.add_access_key(db_id, "readwrite_key".to_string(), "readwrite".to_string())
.await
.expect("add_access_key readwrite failed");
let _ = rpc_client
.add_access_key(db_id, "read_key".to_string(), "read".to_string())
.await
.expect("add_access_key read failed");
// Connect to Redis and SELECT DB with readwrite key
let mut conn = get_redis_connection(port);
let sel_ok: RedisResult<String> = redis::cmd("SELECT")
.arg(db_id)
.arg("KEY")
.arg("readwrite_key")
.query(&mut conn);
assert!(sel_ok.is_ok(), "SELECT db with key failed: {:?}", sel_ok);
assert_eq!(sel_ok.unwrap(), "OK");
// 1) Configure embedding providers: textset -> testhash dim 64, imageset -> testimagehash dim 512
let v = redis::cmd("LANCE.EMBEDDING")
.arg("CONFIG")
.arg("SET")
.arg("textset")
.arg("PROVIDER")
.arg("testhash")
.arg("MODEL")
.arg("any")
.arg("PARAM")
.arg("dim")
.arg("64")
.query::<Value>(&mut conn)
.unwrap();
assert!(value_is_ok(&v), "Embedding config set (text) not OK: {}", to_string_lossy(&v));
let v = redis::cmd("LANCE.EMBEDDING")
.arg("CONFIG")
.arg("SET")
.arg("imageset")
.arg("PROVIDER")
.arg("testimagehash")
.arg("MODEL")
.arg("any")
.arg("PARAM")
.arg("dim")
.arg("512")
.query::<Value>(&mut conn)
.unwrap();
assert!(value_is_ok(&v), "Embedding config set (image) not OK: {}", to_string_lossy(&v));
// 2) Create datasets
let v = redis::cmd("LANCE.CREATE")
.arg("textset")
.arg("DIM")
.arg(64)
.query::<Value>(&mut conn)
.unwrap();
assert!(value_is_ok(&v), "LANCE.CREATE textset failed: {}", to_string_lossy(&v));
let v = redis::cmd("LANCE.CREATE")
.arg("imageset")
.arg("DIM")
.arg(512)
.query::<Value>(&mut conn)
.unwrap();
assert!(value_is_ok(&v), "LANCE.CREATE imageset failed: {}", to_string_lossy(&v));
// 3) Store two text documents
let v = redis::cmd("LANCE.STORE")
.arg("textset")
.arg("ID")
.arg("doc-1")
.arg("TEXT")
.arg("The quick brown fox jumps over the lazy dog")
.arg("META")
.arg("title")
.arg("Fox")
.arg("category")
.arg("animal")
.query::<Value>(&mut conn)
.unwrap();
assert!(value_is_ok(&v), "LANCE.STORE doc-1 failed: {}", to_string_lossy(&v));
let v = redis::cmd("LANCE.STORE")
.arg("textset")
.arg("ID")
.arg("doc-2")
.arg("TEXT")
.arg("A fast auburn fox vaulted a sleepy canine")
.arg("META")
.arg("title")
.arg("Paraphrase")
.arg("category")
.arg("animal")
.query::<Value>(&mut conn)
.unwrap();
assert!(value_is_ok(&v), "LANCE.STORE doc-2 failed: {}", to_string_lossy(&v));
// 4) Store two images via BYTES (local fake bytes; embedder only hashes bytes, not decoding)
let img1: Vec<u8> = b"local-image-bytes-1-abcdefghijklmnopqrstuvwxyz".to_vec();
let img2: Vec<u8> = b"local-image-bytes-2-ABCDEFGHIJKLMNOPQRSTUVWXYZ".to_vec();
let img1_b64 = base64::engine::general_purpose::STANDARD.encode(&img1);
let img2_b64 = base64::engine::general_purpose::STANDARD.encode(&img2);
let v = redis::cmd("LANCE.STOREIMAGE")
.arg("imageset")
.arg("ID")
.arg("img-1")
.arg("BYTES")
.arg(&img1_b64)
.arg("META")
.arg("title")
.arg("Local1")
.arg("group")
.arg("demo")
.query::<Value>(&mut conn)
.unwrap();
assert!(value_is_ok(&v), "LANCE.STOREIMAGE img-1 failed: {}", to_string_lossy(&v));
let v = redis::cmd("LANCE.STOREIMAGE")
.arg("imageset")
.arg("ID")
.arg("img-2")
.arg("BYTES")
.arg(&img2_b64)
.arg("META")
.arg("title")
.arg("Local2")
.arg("group")
.arg("demo")
.query::<Value>(&mut conn)
.unwrap();
assert!(value_is_ok(&v), "LANCE.STOREIMAGE img-2 failed: {}", to_string_lossy(&v));
// 5) Search text: K 2 QUERY "quick brown fox" RETURN 1 title
let v = redis::cmd("LANCE.SEARCH")
.arg("textset")
.arg("K")
.arg(2)
.arg("QUERY")
.arg("quick brown fox")
.arg("RETURN")
.arg(1)
.arg("title")
.query::<Value>(&mut conn)
.unwrap();
// Should be an array of hits
let ids = extract_hit_ids(&v);
assert!(
ids.contains(&"doc-1".to_string()) || ids.contains(&"doc-2".to_string()),
"LANCE.SEARCH should return doc-1/doc-2; got: {}",
to_string_lossy(&v)
);
// With FILTER on category
let v = redis::cmd("LANCE.SEARCH")
.arg("textset")
.arg("K")
.arg(2)
.arg("QUERY")
.arg("fox jumps")
.arg("FILTER")
.arg("category = 'animal'")
.arg("RETURN")
.arg(1)
.arg("title")
.query::<Value>(&mut conn)
.unwrap();
let ids_f = extract_hit_ids(&v);
assert!(
!ids_f.is_empty(),
"Filtered LANCE.SEARCH should return at least one document; got: {}",
to_string_lossy(&v)
);
// 6) Search images with QUERYBYTES
let query_img: Vec<u8> = b"local-image-query-3-1234567890".to_vec();
let query_img_b64 = base64::engine::general_purpose::STANDARD.encode(&query_img);
let v = redis::cmd("LANCE.SEARCHIMAGE")
.arg("imageset")
.arg("K")
.arg(2)
.arg("QUERYBYTES")
.arg(&query_img_b64)
.arg("RETURN")
.arg(1)
.arg("title")
.query::<Value>(&mut conn)
.unwrap();
// Should get 2 hits (img-1 and img-2) in some order; assert array non-empty
let img_ids = extract_hit_ids(&v);
assert!(
!img_ids.is_empty(),
"LANCE.SEARCHIMAGE should return non-empty results; got: {}",
to_string_lossy(&v)
);
// 7) Inspect datasets
let v = redis::cmd("LANCE.LIST").query::<Value>(&mut conn).unwrap();
assert!(
bulk_contains_string(&v, "textset"),
"LANCE.LIST missing textset: {}",
to_string_lossy(&v)
);
assert!(
bulk_contains_string(&v, "imageset"),
"LANCE.LIST missing imageset: {}",
to_string_lossy(&v)
);
// INFO textset
let info_text = redis::cmd("LANCE.INFO")
.arg("textset")
.query::<Value>(&mut conn)
.unwrap();
// INFO returns Array [k,v,k,v,...] including "dimension" "64" and "row_count" "...".
let info_str = to_string_lossy(&info_text);
assert!(
info_str.contains("dimension") && info_str.contains("64"),
"LANCE.INFO textset should include dimension 64; got: {}",
info_str
);
// 8) Delete by id and drop datasets
let v = redis::cmd("LANCE.DEL")
.arg("textset")
.arg("doc-2")
.query::<Value>(&mut conn)
.unwrap();
// Returns SimpleString "1" or Int 1 depending on encoding path; accept either
assert!(
value_is_int_eq(&v, 1) || value_is_str_eq(&v, "1"),
"LANCE.DEL doc-2 expected 1; got {}",
to_string_lossy(&v)
);
let v = redis::cmd("LANCE.DROP")
.arg("textset")
.query::<Value>(&mut conn)
.unwrap();
assert!(value_is_ok(&v), "LANCE.DROP textset failed: {}", to_string_lossy(&v));
let v = redis::cmd("LANCE.DROP")
.arg("imageset")
.query::<Value>(&mut conn)
.unwrap();
assert!(value_is_ok(&v), "LANCE.DROP imageset failed: {}", to_string_lossy(&v));
}