Implement proper key types
Signed-off-by: Lee Smet <lee.smet@hotmail.com>
This commit is contained in:
112
vault/src/key/asymmetric.rs
Normal file
112
vault/src/key/asymmetric.rs
Normal file
@@ -0,0 +1,112 @@
|
||||
//! An implementation of asymmetric cryptography using SECP256k1 ECDH with ChaCha20Poly1305
|
||||
//! for the actual encryption.
|
||||
|
||||
use k256::{
|
||||
SecretKey,
|
||||
ecdh::diffie_hellman,
|
||||
};
|
||||
use sha2::Sha256;
|
||||
|
||||
use crate::{error::CryptoError, key::symmetric::SymmetricKey};
|
||||
|
||||
/// A keypair for use in asymmetric encryption operations.
|
||||
pub struct AsymmetricKeypair {
|
||||
/// Private part of the key
|
||||
private: SecretKey,
|
||||
/// Public part of the key
|
||||
public: k256::PublicKey,
|
||||
}
|
||||
|
||||
/// The public key part of an asymmetric keypair.
|
||||
pub struct PublicKey(k256::PublicKey);
|
||||
|
||||
impl AsymmetricKeypair {
|
||||
/// Generates a new random keypair
|
||||
pub fn new() -> Result<Self, CryptoError> {
|
||||
let mut raw_private = [0u8; 32];
|
||||
rand::fill(&mut raw_private);
|
||||
let sk = SecretKey::from_slice(&raw_private)
|
||||
.expect("Key is provided generated with fixed valid size");
|
||||
let pk = sk.public_key();
|
||||
|
||||
Ok(Self {
|
||||
private: sk,
|
||||
public: pk,
|
||||
})
|
||||
}
|
||||
|
||||
/// Create a new key from existing bytes.
|
||||
pub(crate) fn from_bytes(bytes: &[u8]) -> Result<Self, CryptoError> {
|
||||
if bytes.len() == 32 {
|
||||
let sk = SecretKey::from_slice(&bytes).expect("Key was checked to be a valid size");
|
||||
let pk = sk.public_key();
|
||||
Ok(Self {
|
||||
private: sk,
|
||||
public: pk,
|
||||
})
|
||||
} else {
|
||||
Err(CryptoError::InvalidKeySize)
|
||||
}
|
||||
}
|
||||
|
||||
/// View the raw bytes of the private key of this keypair.
|
||||
pub(crate) fn as_raw_private_key(&self) -> Vec<u8> {
|
||||
self.private.as_scalar_primitive().to_bytes().to_vec()
|
||||
}
|
||||
|
||||
/// Get the public part of this keypair.
|
||||
pub fn public_key(&self) -> PublicKey {
|
||||
PublicKey(self.public.clone())
|
||||
}
|
||||
|
||||
/// Encrypt data for a receiver. First a shared secret is derived using the own private key and
|
||||
/// the receivers public key. Then, this shared secret is used for symmetric encryption of the
|
||||
/// plaintext. The receiver can decrypt this by generating the same shared secret, using his
|
||||
/// own private key and our public key.
|
||||
pub fn encrypt(
|
||||
&self,
|
||||
remote_key: &PublicKey,
|
||||
plaintext: &[u8],
|
||||
) -> Result<Vec<u8>, CryptoError> {
|
||||
let mut symmetric_key = [0u8; 32];
|
||||
diffie_hellman(self.private.to_nonzero_scalar(), remote_key.0.as_affine())
|
||||
.extract::<Sha256>(None)
|
||||
.expand(&[], &mut symmetric_key)
|
||||
.map_err(|_| CryptoError::InvalidKeySize)?;
|
||||
|
||||
let sym_key = SymmetricKey::from_bytes(&symmetric_key)?;
|
||||
|
||||
sym_key.encrypt(plaintext)
|
||||
}
|
||||
|
||||
/// Decrypt data from a sender. The remote key must be the public key of the keypair used by
|
||||
/// the sender to encrypt this message.
|
||||
pub fn decrypt(
|
||||
&self,
|
||||
remote_key: &PublicKey,
|
||||
ciphertext: &[u8],
|
||||
) -> Result<Vec<u8>, CryptoError> {
|
||||
let mut symmetric_key = [0u8; 32];
|
||||
diffie_hellman(self.private.to_nonzero_scalar(), remote_key.0.as_affine())
|
||||
.extract::<Sha256>(None)
|
||||
.expand(&[], &mut symmetric_key)
|
||||
.map_err(|_| CryptoError::InvalidKeySize)?;
|
||||
|
||||
let sym_key = SymmetricKey::from_bytes(&symmetric_key)?;
|
||||
|
||||
sym_key.decrypt(ciphertext)
|
||||
}
|
||||
}
|
||||
|
||||
impl PublicKey {
|
||||
/// Import a public key from raw bytes
|
||||
pub fn from_bytes(bytes: &[u8]) -> Result<Self, CryptoError> {
|
||||
if bytes.len() == 64 {
|
||||
Ok(Self(
|
||||
k256::PublicKey::from_sec1_bytes(bytes).expect("Key is of valid size"),
|
||||
))
|
||||
} else {
|
||||
Err(CryptoError::InvalidKeySize)
|
||||
}
|
||||
}
|
||||
}
|
76
vault/src/key/signature.rs
Normal file
76
vault/src/key/signature.rs
Normal file
@@ -0,0 +1,76 @@
|
||||
//! An implementation of digitial signatures using secp256k1 ECDSA.
|
||||
|
||||
use k256::ecdsa::{
|
||||
Signature, SigningKey, VerifyingKey,
|
||||
signature::{Signer, Verifier},
|
||||
};
|
||||
|
||||
use crate::error::CryptoError;
|
||||
|
||||
pub struct SigningKeypair {
|
||||
sk: SigningKey,
|
||||
vk: VerifyingKey,
|
||||
}
|
||||
|
||||
pub struct PublicKey(VerifyingKey);
|
||||
|
||||
impl SigningKeypair {
|
||||
/// Generates a new random keypair
|
||||
pub fn new() -> Result<Self, CryptoError> {
|
||||
let mut raw_private = [0u8; 32];
|
||||
rand::fill(&mut raw_private);
|
||||
let sk = SigningKey::from_slice(&raw_private)
|
||||
.expect("Key is provided generated with fixed valid size");
|
||||
let vk = sk.verifying_key().to_owned();
|
||||
|
||||
Ok(Self { sk, vk })
|
||||
}
|
||||
|
||||
/// Create a new key from existing bytes.
|
||||
pub(crate) fn from_bytes(bytes: &[u8]) -> Result<Self, CryptoError> {
|
||||
if bytes.len() == 32 {
|
||||
let sk = SigningKey::from_slice(&bytes).expect("Key was checked to be a valid size");
|
||||
let vk = sk.verifying_key().to_owned();
|
||||
Ok(Self { sk, vk })
|
||||
} else {
|
||||
Err(CryptoError::InvalidKeySize)
|
||||
}
|
||||
}
|
||||
|
||||
/// View the raw bytes of the private key of this keypair.
|
||||
pub(crate) fn as_raw_private_key(&self) -> Vec<u8> {
|
||||
self.sk.as_nonzero_scalar().to_bytes().to_vec()
|
||||
}
|
||||
|
||||
/// Get the public part of this keypair.
|
||||
pub fn public_key(&self) -> PublicKey {
|
||||
PublicKey(self.vk)
|
||||
}
|
||||
|
||||
/// Sign data with the private key of this `SigningKeypair`. Other parties can use the public
|
||||
/// key to verify the signature. The generated signature is a detached signature.
|
||||
pub fn sign(&self, message: &[u8]) -> Result<Vec<u8>, CryptoError> {
|
||||
let sig: Signature = self.sk.sign(message);
|
||||
Ok(sig.to_vec())
|
||||
}
|
||||
}
|
||||
|
||||
impl PublicKey {
|
||||
/// Import a public key from raw bytes
|
||||
pub fn from_bytes(bytes: &[u8]) -> Result<Self, CryptoError> {
|
||||
if bytes.len() == 64 {
|
||||
Ok(Self(
|
||||
VerifyingKey::from_sec1_bytes(bytes).expect("Key is of valid size"),
|
||||
))
|
||||
} else {
|
||||
Err(CryptoError::InvalidKeySize)
|
||||
}
|
||||
}
|
||||
|
||||
pub fn verify_signature(&self, message: &[u8], sig: &[u8]) -> Result<(), CryptoError> {
|
||||
let sig = Signature::from_slice(sig).map_err(|_| CryptoError::InvalidKeySize)?;
|
||||
self.0
|
||||
.verify(message, &sig)
|
||||
.map_err(|_| CryptoError::SignatureFailed)
|
||||
}
|
||||
}
|
86
vault/src/key/symmetric.rs
Normal file
86
vault/src/key/symmetric.rs
Normal file
@@ -0,0 +1,86 @@
|
||||
//! An implementation of symmetric keys for ChaCha20Poly1305 encryption.
|
||||
//!
|
||||
//! The ciphertext is authenticated.
|
||||
//! The 12-byte nonce is appended to the generated ciphertext.
|
||||
//! Keys are 32 bytes in size.
|
||||
|
||||
use chacha20poly1305::{ChaCha20Poly1305, KeyInit, Nonce, aead::Aead};
|
||||
|
||||
use crate::error::CryptoError;
|
||||
|
||||
pub struct SymmetricKey([u8; 32]);
|
||||
|
||||
/// Size of a nonce in ChaCha20Poly1305.
|
||||
const NONCE_SIZE: usize = 12;
|
||||
|
||||
impl SymmetricKey {
|
||||
/// Generate a new random SymmetricKey.
|
||||
pub fn new() -> Self {
|
||||
let mut key = [0u8; 32];
|
||||
rand::fill(&mut key);
|
||||
Self(key)
|
||||
}
|
||||
|
||||
/// Create a new key from existing bytes.
|
||||
pub(crate) fn from_bytes(bytes: &[u8]) -> Result<SymmetricKey, CryptoError> {
|
||||
if bytes.len() == 32 {
|
||||
let mut key = [0u8; 32];
|
||||
key.copy_from_slice(bytes);
|
||||
Ok(SymmetricKey(key))
|
||||
} else {
|
||||
Err(CryptoError::InvalidKeySize)
|
||||
}
|
||||
}
|
||||
|
||||
/// View the raw bytes of this key
|
||||
pub(crate) fn as_raw_bytes(&self) -> &[u8; 32] {
|
||||
&self.0
|
||||
}
|
||||
|
||||
/// Encrypt a plaintext with the key. A nonce is generated and appended to the end of the
|
||||
/// message.
|
||||
pub fn encrypt(&self, plaintext: &[u8]) -> Result<Vec<u8>, CryptoError> {
|
||||
// Create cipher
|
||||
let cipher = ChaCha20Poly1305::new_from_slice(&self.0)
|
||||
.expect("Key is a fixed 32 byte array so size is always ok");
|
||||
|
||||
// Generate random nonce
|
||||
let mut nonce_bytes = [0u8; NONCE_SIZE];
|
||||
rand::fill(&mut nonce_bytes);
|
||||
let nonce = Nonce::from_slice(&nonce_bytes);
|
||||
|
||||
// Encrypt message
|
||||
let mut ciphertext = cipher
|
||||
.encrypt(nonce, plaintext)
|
||||
.map_err(|_| CryptoError::EncryptionFailed)?;
|
||||
|
||||
// Append nonce to ciphertext
|
||||
ciphertext.extend_from_slice(&nonce_bytes);
|
||||
|
||||
Ok(ciphertext)
|
||||
}
|
||||
|
||||
/// Decrypts a ciphertext with appended nonce.
|
||||
pub fn decrypt(&self, ciphertext: &[u8]) -> Result<Vec<u8>, CryptoError> {
|
||||
// Check if ciphertext is long enough to contain a nonce
|
||||
if ciphertext.len() <= NONCE_SIZE {
|
||||
return Err(CryptoError::DecryptionFailed);
|
||||
}
|
||||
|
||||
// Extract nonce from the end of ciphertext
|
||||
let ciphertext_len = ciphertext.len() - NONCE_SIZE;
|
||||
let ciphertext = &ciphertext[0..ciphertext_len];
|
||||
let nonce_bytes = &ciphertext[ciphertext_len..];
|
||||
|
||||
// Create cipher
|
||||
let cipher = ChaCha20Poly1305::new_from_slice(&self.0)
|
||||
.expect("Key is a fixed 32 byte array so size is always ok");
|
||||
|
||||
let nonce = Nonce::from_slice(nonce_bytes);
|
||||
|
||||
// Decrypt message
|
||||
cipher
|
||||
.decrypt(nonce, ciphertext)
|
||||
.map_err(|_| CryptoError::DecryptionFailed)
|
||||
}
|
||||
}
|
Reference in New Issue
Block a user