add benchmarking, more models and examples

This commit is contained in:
timurgordon
2025-06-12 05:21:52 +03:00
parent 79b37cf9ce
commit de1740f0d1
51 changed files with 7110 additions and 231 deletions

View File

@@ -0,0 +1,72 @@
# Minimal Rhailib Benchmark
A simplified, minimal benchmarking tool for rhailib performance testing.
## Overview
This benchmark focuses on simplicity and direct timing measurements:
- Creates a single task (n=1) using Lua script
- Measures latency using Redis timestamps
- Uses existing worker binary
- ~85 lines of code total
## Usage
### Prerequisites
- Redis running on `127.0.0.1:6379`
- Worker binary built: `cd src/worker && cargo build --release`
### Run Benchmark
```bash
# From project root
cargo bench
```
### Expected Output
```
🧹 Cleaning up Redis...
🚀 Starting worker...
📝 Creating single task...
⏱️ Waiting for completion...
✅ Task completed in 23.45ms
🧹 Cleaning up...
```
## Files
- `simple_bench.rs` - Main benchmark binary (85 lines)
- `batch_task.lua` - Minimal Lua script for task creation (28 lines)
- `Cargo.toml` - Dependencies and binary configuration
- `README.md` - This file
## How It Works
1. **Cleanup**: Clear Redis queues and task details
2. **Start Worker**: Spawn single worker process
3. **Create Task**: Use Lua script to create one task with timestamp
4. **Wait & Measure**: Poll task until complete, calculate latency
5. **Cleanup**: Kill worker and clear Redis
## Latency Calculation
```
latency_ms = updated_at - created_at
```
Where:
- `created_at`: Timestamp when task was created (Lua script)
- `updated_at`: Timestamp when worker completed task
## Future Iterations
- **Iteration 2**: Small batches (n=5, n=10)
- **Iteration 3**: Larger batches and script complexity
- **Iteration 4**: Performance optimizations
## Benefits
- **Minimal Code**: 85 lines vs previous 800+ lines
- **Easy to Understand**: Single file, linear flow
- **Direct Timing**: Redis timestamps, no complex stats
- **Fast to Modify**: No abstractions or frameworks
- **Reliable**: Simple Redis operations

View File

@@ -0,0 +1,46 @@
-- Minimal Lua script for single task creation (n=1)
-- Args: circle_name, rhai_script_content, task_count (optional, defaults to 1)
-- Returns: array of task keys for timing
if #ARGV < 2 then
return redis.error_reply("Usage: EVAL script 0 circle_name rhai_script_content [task_count]")
end
local circle_name = ARGV[1]
local rhai_script_content = ARGV[2]
local task_count = tonumber(ARGV[3]) or 1
-- Validate task_count
if task_count <= 0 or task_count > 10000 then
return redis.error_reply("task_count must be a positive integer between 1 and 10000")
end
-- Get current timestamp in Unix seconds (to match worker expectations)
local rhai_task_queue = 'rhai_tasks:' .. circle_name
local task_keys = {}
local current_time = redis.call('TIME')[1]
-- Create multiple tasks
for i = 1, task_count do
-- Generate unique task ID
local task_id = 'task_' .. redis.call('INCR', 'global_task_counter')
local task_details_key = 'rhai_task_details:' .. task_id
-- Create task details hash with creation timestamp
redis.call('HSET', task_details_key,
'script', rhai_script_content,
'status', 'pending',
'createdAt', current_time,
'updatedAt', current_time,
'task_sequence', tostring(i)
)
-- Queue the task for workers
redis.call('LPUSH', rhai_task_queue, task_id)
-- Add key to return array
table.insert(task_keys, task_details_key)
end
-- Return array of task keys for timing analysis
return task_keys

View File

@@ -0,0 +1,204 @@
use criterion::{criterion_group, criterion_main, Criterion};
use redis::{Client, Commands};
use std::process::{Command, Child, Stdio};
use std::time::Duration;
use std::thread;
use std::fs;
const REDIS_URL: &str = "redis://127.0.0.1:6379";
const CIRCLE_NAME: &str = "bench_circle";
const SIMPLE_SCRIPT: &str = "new_event()\n .title(\"Weekly Sync\")\n .location(\"Conference Room A\")\n .description(\"Regular team sync meeting\")\n .save_event();";
fn cleanup_redis() -> Result<(), redis::RedisError> {
let client = Client::open(REDIS_URL)?;
let mut conn = client.get_connection()?;
// Clear task queue and any existing task details
let _: () = conn.del(format!("rhai_tasks:{}", CIRCLE_NAME))?;
let keys: Vec<String> = conn.scan_match("rhai_task_details:*")?.collect();
if !keys.is_empty() {
let _: () = conn.del(keys)?;
}
Ok(())
}
fn start_worker() -> Result<Child, std::io::Error> {
Command::new("cargo")
.args(&["run", "--release", "--bin", "worker", "--",
"--circle", CIRCLE_NAME,
"--redis-url", REDIS_URL,
"--worker-id", "bench_worker",
"--preserve-tasks"])
.current_dir("src/worker")
.stdout(Stdio::null())
.stderr(Stdio::null())
.spawn()
}
fn create_batch_tasks(task_count: usize) -> Result<Vec<String>, Box<dyn std::error::Error>> {
let client = Client::open(REDIS_URL)?;
let mut conn = client.get_connection()?;
// Load and execute Lua script
let lua_script = fs::read_to_string("benches/simple_rhai_bench/batch_task.lua")?;
let result: redis::Value = redis::cmd("EVAL")
.arg(lua_script)
.arg(0)
.arg(CIRCLE_NAME)
.arg(SIMPLE_SCRIPT)
.arg(task_count)
.query(&mut conn)?;
// Parse the task keys from the response
let task_keys = match result {
redis::Value::Bulk(items) => {
let mut keys = Vec::new();
for item in items {
if let redis::Value::Data(key_data) = item {
keys.push(String::from_utf8_lossy(&key_data).to_string());
}
}
keys
}
_ => {
return Err(format!("Unexpected Redis response type: {:?}", result).into());
}
};
Ok(task_keys)
}
fn wait_and_measure(task_key: &str) -> Result<f64, redis::RedisError> {
let client = Client::open(REDIS_URL)?;
let mut conn = client.get_connection()?;
let start_time = std::time::Instant::now();
let timeout = Duration::from_secs(100);
// Poll until task is completed or timeout
loop {
let status: Option<String> = conn.hget(task_key, "status")?;
match status.as_deref() {
Some("completed") | Some("error") => {
println!("Task {} completed with status: {}", task_key, status.as_deref().unwrap_or("unknown"));
let created_at: u64 = conn.hget(task_key, "createdAt")?;
let updated_at: u64 = conn.hget(task_key, "updatedAt")?;
return Ok((updated_at - created_at) as f64 * 1000.0); // Convert to milliseconds
}
Some("pending") | Some("processing") => {
thread::sleep(Duration::from_millis(100));
}
_ => {
thread::sleep(Duration::from_millis(100));
}
}
// Check timeout
if start_time.elapsed() > timeout {
return Err(redis::RedisError::from((
redis::ErrorKind::IoError,
"Timeout waiting for task completion"
)));
}
}
}
fn wait_for_batch_completion(task_keys: &[String]) -> Result<f64, Box<dyn std::error::Error>> {
let client = Client::open(REDIS_URL)?;
let mut conn = client.get_connection()?;
let start_time = std::time::Instant::now();
let timeout = Duration::from_secs(30);
// Wait for all tasks to complete
loop {
let mut completed_count = 0;
let mut total_latency = 0u64;
for task_key in task_keys {
let status: Option<String> = conn.hget(task_key, "status")?;
match status.as_deref() {
Some("completed") | Some("error") => {
completed_count += 1;
// Get timing data
let created_at: u64 = conn.hget(task_key, "createdAt")?;
let updated_at: u64 = conn.hget(task_key, "updatedAt")?;
total_latency += updated_at - created_at;
}
_ => {} // Still pending or processing
}
}
if completed_count == task_keys.len() {
// All tasks completed, calculate average latency in milliseconds
let avg_latency_ms = (total_latency as f64 / task_keys.len() as f64) * 1000.0;
return Ok(avg_latency_ms);
}
// Check timeout
if start_time.elapsed() > timeout {
return Err(format!("Timeout waiting for batch completion. Completed: {}/{}", completed_count, task_keys.len()).into());
}
thread::sleep(Duration::from_millis(100));
}
}
fn cleanup_worker(mut worker: Child) -> Result<(), std::io::Error> {
worker.kill()?;
worker.wait()?;
Ok(())
}
fn bench_single_rhai_task(c: &mut Criterion) {
// Setup: ensure worker is built
let _ = Command::new("cargo")
.args(&["build", "--release", "--bin", "worker"])
.current_dir("src/worker")
.output()
.expect("Failed to build worker");
// Clean up before starting
cleanup_redis().expect("Failed to cleanup Redis");
// Start worker once and reuse it
let worker = start_worker().expect("Failed to start worker");
thread::sleep(Duration::from_millis(1000)); // Give worker time to start
let mut group = c.benchmark_group("rhai_task_execution");
group.sample_size(10); // Reduce sample size
group.measurement_time(Duration::from_secs(10)); // Reduce measurement time
group.bench_function("batch_task_latency", |b| {
b.iter_custom(|iters| {
let mut total_latency = Duration::ZERO;
for _i in 0..iters {
// Clean up Redis between iterations
cleanup_redis().expect("Failed to cleanup Redis");
// Create 100 tasks and measure average latency using Redis timestamps
let task_keys = create_batch_tasks(5000).expect("Failed to create batch tasks");
let avg_latency_ms = wait_for_batch_completion(&task_keys).expect("Failed to measure batch completion");
// Convert average latency to duration
total_latency += Duration::from_millis(avg_latency_ms as u64);
}
total_latency
});
});
group.finish();
// Cleanup worker
cleanup_worker(worker).expect("Failed to cleanup worker");
cleanup_redis().expect("Failed to cleanup Redis");
}
criterion_group!(benches, bench_single_rhai_task);
criterion_main!(benches);