reorganize module

This commit is contained in:
Timur Gordon
2025-04-04 08:28:07 +02:00
parent 1ea37e2e7f
commit 939b6b4e57
375 changed files with 7580 additions and 191 deletions

View File

@@ -1,88 +0,0 @@
Create a Module from an AST
===========================
{{#include ../../links.md}}
`Module::eval_ast_as_new`
-------------------------
```admonish info.side.wide "Encapsulated environment"
`Module::eval_ast_as_new` encapsulates the entire [`AST`] into each function call, merging the
[module namespace][function namespace] with the [global namespace][function namespace].
Therefore, [functions] defined within the same [module] script can cross-call each other.
```
```admonish info.side.wide "See also"
See [_Export Variables, Functions and Sub-Modules from Script_][`export`] for details on how to prepare
a Rhai script for this purpose as well as to control which [functions]/[variables] to export.
```
A [module] can be created from a single script (or pre-compiled [`AST`]) containing global
[variables], [functions] and [sub-modules][module] via `Module::eval_ast_as_new`.
When given an [`AST`], it is first evaluated (usually to [import][`import`] [modules] and set up global
[constants] used by [functions]), then the following items are exposed as members of the new [module]:
* global [variables] and [constants] – all [variables] and [constants] exported via the
[`export`] statement (those not exported remain hidden),
* [functions] not specifically marked [`private`],
* imported [modules] that remain in the [`Scope`] at the end of a script run become sub-modules.
Examples
--------
Don't forget the [`export`] statement, otherwise there will be no [variables] exposed by the
[module] other than non-[`private`] [functions] (unless that's intentional).
```rust
use rhai::{Engine, Module};
let engine = Engine::new();
// Compile a script into an 'AST'
let ast = engine.compile(
r#"
// Functions become module functions
fn calc(x) {
x + add_len(x, 1) // functions within the same module
// can always cross-call each other!
}
fn add_len(x, y) {
x + y.len
}
// Imported modules become sub-modules
import "another module" as extra;
// Variables defined at global level can become module variables
const x = 123;
let foo = 41;
let hello;
// Variable values become constant module variable values
foo = calc(foo);
hello = `hello, ${foo} worlds!`;
// Finally, export the variables and modules
export x as abc; // aliased variable name
export foo;
export hello;
"#)?;
// Convert the 'AST' into a module, using the 'Engine' to evaluate it first
// A copy of the entire 'AST' is encapsulated into each function,
// allowing functions in the module script to cross-call each other.
let module = Module::eval_ast_as_new(Scope::new(), &ast, &engine)?;
// 'module' now contains:
// - sub-module: 'extra'
// - functions: 'calc', 'add_len'
// - constants: 'abc' (renamed from 'x'), 'foo', 'hello'
```

View File

@@ -1,24 +0,0 @@
Create a Module in Rust
=======================
{{#include ../../links.md}}
The Easy Way – Plugin
---------------------------
By far the simplest way to create a [module] is via a [plugin module]
which converts a normal Rust module into a Rhai [module] via procedural macros.
The Hard Way – `Module` API
---------------------------------
Manually creating a [module] is possible via the [`Module`] public API, which is volatile and may
change from time to time.
~~~admonish info.small "`Module` public API"
For the complete [`Module`] public API, refer to the
[documentation](https://docs.rs/rhai/{{version}}/rhai/struct.Module.html) online.
~~~

View File

@@ -1,30 +0,0 @@
Modules
=======
{{#include ../../links.md}}
Rhai allows organizing functionalities ([functions], both Rust-based and scripted, and
[variables]) into independent _modules_.
A module has the type `rhai::Module` and holds a collection of [functions], [variables], [type
iterators] and sub-modules.
It may contain entirely Rust functions, or it may encapsulate a Rhai script together with
all the [functions] and [variables] defined by that script.
Other scripts then load this module and use the [functions] and [variables] [exported][`export`].
Alternatively, modules can be registered directly into an [`Engine`] and made available to scripts,
either globally or under individual static module [_namespaces_][function namespaces].
Modules can be disabled via the [`no_module`] feature.
Usage Patterns
--------------
| Usage | API | Lookup | Sub-modules? | Variables? |
| -------------- | :-------------------------------: | :----------------------: | :----------: | :--------: |
| Global module | `Engine:: register_global_module` | simple name | ignored | yes |
| Static module | `Engine:: register_static_module` | namespace-qualified name | yes | yes |
| Dynamic module | [`import`] statement | namespace-qualified name | yes | yes |

View File

@@ -1,10 +0,0 @@
Built-in Module Resolvers
=========================
{{#include ../../../links.md}}
There are a number of standard [module resolvers] built into Rhai, the default being the
[`FileModuleResolver`](file.md) which simply loads a script file based on the path (with `.rhai`
extension attached) and execute it to form a [module].
Built-in [module resolvers] are grouped under the `rhai::module_resolvers` module.

View File

@@ -1,11 +0,0 @@
`ModuleResolversCollection`
===========================
{{#include ../../../links.md}}
A collection of [module resolvers].
[Modules] are resolved from each resolver in sequential order.
This is useful when multiple types of [modules] are needed simultaneously.

View File

@@ -1,95 +0,0 @@
Implement a Custom Module Resolver
==================================
{{#include ../../../links.md}}
For many applications in which Rhai is embedded, it is necessary to customize the way that [modules]
are resolved. For instance, [modules] may need to be loaded from script texts stored in a database,
not in the file system.
A module resolver must implement the [`ModuleResolver`][traits] trait, which contains only one
required function: `resolve`.
When Rhai prepares to load a module, `ModuleResolver::resolve` is called with the name
of the _module path_ (i.e. the path specified in the [`import`] statement).
```admonish success
Upon success, it should return a shared [module] wrapped by `Rc` (or `Arc` under [`sync`]).
The module resolver should call `Module::build_index` on the target [module] before returning it.
* This method flattens the entire module tree and _indexes_ it for fast function name resolution.
* If the module is already indexed, calling this method has no effect.
```
```admonish failure
* If the path does not resolve to a valid module, return `EvalAltResult::ErrorModuleNotFound`.
* If the module failed to load, return `EvalAltResult::ErrorInModule`.
```
Example of a Custom Module Resolver
-----------------------------------
```rust
use rhai::{ModuleResolver, Module, Engine, EvalAltResult};
// Define a custom module resolver.
struct MyModuleResolver {}
// Implement the 'ModuleResolver' trait.
impl ModuleResolver for MyModuleResolver {
// Only required function.
fn resolve(
&self,
engine: &Engine, // reference to the current 'Engine'
source_path: Option<&str>, // path of the parent module
path: &str, // the module path
pos: Position, // position of the 'import' statement
) -> Result<Rc<Module>, Box<EvalAltResult>> {
// Check module path.
if is_valid_module_path(path) {
// Load the custom module
match load_secret_module(path) {
Ok(my_module) => {
my_module.build_index(); // index it
Rc::new(my_module) // make it shared
},
// Return 'EvalAltResult::ErrorInModule' upon loading error
Err(err) => Err(EvalAltResult::ErrorInModule(path.into(), Box::new(err), pos).into())
}
} else {
// Return 'EvalAltResult::ErrorModuleNotFound' if the path is invalid
Err(EvalAltResult::ErrorModuleNotFound(path.into(), pos).into())
}
}
}
let mut engine = Engine::new();
// Set the custom module resolver into the 'Engine'.
engine.set_module_resolver(MyModuleResolver {});
engine.run(
r#"
import "hello" as foo; // this 'import' statement will call
// 'MyModuleResolver::resolve' with "hello" as 'path'
foo:bar();
"#)?;
```
Advanced &ndash; `ModuleResolver::resolve_ast`
----------------------------------------------
There is another function in the [`ModuleResolver`][traits] trait, `resolve_ast`, which is a
low-level API intended for advanced usage scenarios.
`ModuleResolver::resolve_ast` has a default implementation that simply returns `None`,
which indicates that this API is not supported by the [module resolver].
Any [module resolver] that serves [modules] based on Rhai scripts should implement
`ModuleResolver::resolve_ast`. When called, the compiled [`AST`] of the script should be returned.
`ModuleResolver::resolve_ast` should not return an error if `ModuleResolver::resolve` will not.
On the other hand, the same error should be returned if `ModuleResolver::resolve` will return one.

View File

@@ -1,11 +0,0 @@
`DummyModuleResolver`
=====================
{{#include ../../../links.md}}
```admonish abstract.small "Default"
`DummyModuleResolver` is the default for [`no_std`] or [`Engine::new_raw`][raw `Engine`].
```
This [module resolver] acts as a _dummy_ and fails all module resolution calls.

View File

@@ -1,64 +0,0 @@
`DylibModuleResolver`
=====================
{{#include ../../../links.md}}
~~~admonish warning.small "Requires external crate `rhai-dylib`"
`DylibModuleResolver` resides in the [`rhai-dylib`] crate which must be specified
as a dependency:
```toml
[dependencies]
rhai-dylib = { version = "0.1" }
```
~~~
```admonish danger.small "Linux or Windows only"
[`rhai-dylib`] currently supports only Linux and Windows.
```
Parallel to how the [`FileModuleResolver`](file.md) works, `DylibModuleResolver` loads external
native Rust [modules] from compiled _dynamic shared libraries_ (e.g. `.so` in Linux and `.dll` in
Windows).
Therefore, [`FileModuleResolver`](file.md`) loads Rhai script files while `DylibModuleResolver`
loads native Rust shared libraries. It is very common to have the two work together.
Example
-------
```rust
use rhai::{Engine, Module};
use rhai::module_resolvers::{FileModuleResolver, ModuleResolversCollection};
use rhai_dylib::module_resolvers::DylibModuleResolver;
let mut engine = Engine::new();
// Use a module resolvers collection
let mut resolvers = ModuleResolversCollection::new();
// First search for script files in the file system
resolvers += FileModuleResolver::new();
// Then search for shared-library plugins in the file system
resolvers += DylibModuleResolver::new();
// Set the module resolver into the engine
engine.set_module_resolver(resolvers);
┌─────────────┐
Rhai Script
└─────────────┘
// If there is 'path/to/my_module.rhai', load it.
// Otherwise, check for 'path/to/my_module.so' on Linux
// ('path/to/my_module.dll' on Windows).
import "path/to/my_module" as m;
m::greet();
```

View File

@@ -1,183 +0,0 @@
`FileModuleResolver`
====================
{{#include ../../../links.md}}
```admonish abstract.small "Default"
`FileModuleResolver` is the default for [`Engine::new`][`Engine`].
```
The _default_ [module] resolution service, not available for [`no_std`] or [WASM] builds.
Loads a script file (based off the current directory or a specified one) with `.rhai` extension.
Function Namespace
-------------------
All functions in the [_global_ namespace][function namespace], plus all those defined in the same
[module], are _merged_ into a _unified_ [namespace][function namespace].
All [modules] imported at _global_ level via [`import`] statements become sub-[modules],
which are also available to [functions] defined within the same script file.
Base Directory
--------------
```admonish tip.side.wide "Tip: Default"
If the base directory is not set, then relative paths are based off the directory of the loading script.
This allows scripts to simply cross-load each other.
```
_Relative_ paths are resolved relative to a _root_ directory, which is usually the base directory.
The base directory can be set via `FileModuleResolver::new_with_path` or
`FileModuleResolver::set_base_path`.
Custom [`Scope`]
----------------
```admonish tip.side.wide "Tip"
This [`Scope`] can conveniently hold global [constants] etc.
```
The `set_scope` method adds an optional [`Scope`] which will be used to [optimize][script optimization] [module] scripts.
Caching
-------
```admonish tip.side.wide "Tip: Enable/disable caching"
Use `enable_cache` to enable/disable the cache.
```
By default, [modules] are also _cached_ so a script file is only evaluated _once_, even when
repeatedly imported.
Unix Shebangs
-------------
On Unix-like systems, the _shebang_ (`#!`) is used at the very beginning of a script file to mark a
script with an interpreter (for Rhai this would be [`rhai-run`]({{rootUrl}}/start/bin.md)).
If a script file starts with `#!`, the entire first line is skipped.
Because of this, Rhai scripts with shebangs at the beginning need no special processing.
```js
#!/home/to/me/bin/rhai-run
// This is a Rhai script
let answer = 42;
print(`The answer is: ${answer}`);
```
Example
-------
```rust
┌────────────────┐
│ my_module.rhai │
└────────────────┘
// This function overrides any in the main script.
private fn inner_message() { "hello! from module!" }
fn greet() {
print(inner_message()); // call function in module script
}
fn greet_main() {
print(main_message()); // call function not in module script
}
┌───────────┐
│ main.rhai │
└───────────┘
// This function is overridden by the module script.
fn inner_message() { "hi! from main!" }
// This function is found by the module script.
fn main_message() { "main here!" }
import "my_module" as m;
m::greet(); // prints "hello! from module!"
m::greet_main(); // prints "main here!"
```
Simulate Virtual Functions
--------------------------
When calling a namespace-qualified [function] defined within a [module], other [functions] defined
within the same module override any similar-named [functions] (with the same number of parameters)
defined in the [global namespace][function namespace].
This is to ensure that a [module] acts as a self-contained unit and [functions] defined in the
calling script do not override [module] code.
In some situations, however, it is actually beneficial to do it in reverse: have [module] [functions] call
[functions] defined in the calling script (i.e. in the [global namespace][function namespace]) if
they exist, and only call those defined in the [module] if none are found.
One such situation is the need to provide a _default implementation_ to a simulated _virtual_ function:
```rust
┌────────────────┐
│ my_module.rhai │
└────────────────┘
// Do not do this (it will override the main script):
// fn message() { "hello! from module!" }
// This function acts as the default implementation.
private fn default_message() { "hello! from module!" }
// This function depends on a 'virtual' function 'message'
// which is not defined in the module script.
fn greet() {
if is_def_fn("message", 0) { // 'is_def_fn' detects if 'message' is defined.
print(message());
} else {
print(default_message());
}
}
┌───────────┐
│ main.rhai │
└───────────┘
// The main script defines 'message' which is needed by the module script.
fn message() { "hi! from main!" }
import "my_module" as m;
m::greet(); // prints "hi! from main!"
┌────────────┐
│ main2.rhai │
└────────────┘
// The main script does not define 'message' which is needed by the module script.
import "my_module" as m;
m::greet(); // prints "hello! from module!"
```

View File

@@ -1,35 +0,0 @@
Module Resolvers
================
{{#include ../../../links.md}}
~~~admonish info.side "`import`"
See the section on [_Importing Modules_][`import`] for more details.
~~~
When encountering an [`import`] statement, Rhai attempts to _resolve_ the [module] based on the path string.
_Module Resolvers_ are service types that implement the [`ModuleResolver`][traits] trait.
Set into `Engine`
-----------------
An [`Engine`]'s module resolver is set via a call to `Engine::set_module_resolver`:
```rust
use rhai::module_resolvers::{DummyModuleResolver, StaticModuleResolver};
// Create a module resolver
let resolver = StaticModuleResolver::new();
// Register functions into 'resolver'...
// Use the module resolver
engine.set_module_resolver(resolver);
// Effectively disable 'import' statements by setting module resolver to
// the 'DummyModuleResolver' which acts as... well... a dummy.
engine.set_module_resolver(DummyModuleResolver::new());
```

View File

@@ -1,26 +0,0 @@
`StaticModuleResolver`
======================
{{#include ../../../links.md}}
~~~admonish abstract.small "Useful for `no-std`"
`StaticModuleResolver` is often used with [`no_std`] in embedded environments
without a file system.
~~~
Loads [modules] that are statically added.
Functions are searched in the [_global_ namespace][function namespace] by default.
```rust
use rhai::{Module, module_resolvers::StaticModuleResolver};
let module: Module = create_a_module();
let mut resolver = StaticModuleResolver::new();
resolver.insert("my_module", module);
engine.set_module_resolver(resolver);
```

View File

@@ -1,70 +0,0 @@
Compile to a Self-Contained `AST`
=================================
{{#include ../../links.md}}
```admonish tip.side "Tip"
It does not matter where the [`import`] statement occurs &mdash; e.g. deep within statements blocks
or within [function] bodies.
```
When a script [imports][`import`] external [modules] that may not be available later on, it is
possible to eagerly [_pre-resolve_][module resolver] these imports and embed them directly into a
self-contained [`AST`].
For instance, a system may periodically connect to a central source (e.g. a database) to load
scripts and compile them to [`AST`] form. Afterwards, in order to conserve bandwidth (or due to
other physical limitations), it is disconnected from the central source for self-contained
operation.
Compile a script into a _self-contained_ [`AST`] via `Engine::compile_into_self_contained`.
```rust
let mut engine = Engine::new();
// Compile script into self-contained AST using the current
// module resolver (default to `FileModuleResolver`) to pre-resolve
// 'import' statements.
let ast = engine.compile_into_self_contained(&mut scope, script)?;
// Make sure we can no longer resolve any module!
engine.set_module_resolver(DummyModuleResolver::new());
// The AST still evaluates fine, even with 'import' statements!
engine.run(&ast)?;
```
When such an [`AST`] is evaluated, [`import`] statements within are provided the _pre-resolved_
[modules] without going through the normal [module resolution][module resolver] process.
Only Static Paths
-----------------
`Engine::compile_into_self_contained` only pre-resolves [`import`] statements in the script
that are _static_, i.e. with a path that is a [string] literal.
```rust
// The following import is pre-resolved.
import "hello" as h;
if some_event() {
// The following import is pre-resolved.
import "hello" as h;
}
fn foo() {
// The following import is pre-resolved.
import "hello" as h;
}
// The following import is also pre-resolved because the expression
// is usually optimized into a single string during compilation.
import "he" + "llo" as h;
let module_name = "hello";
// The following import is NOT pre-resolved.
import module_name as h;
```

View File

@@ -1,183 +0,0 @@
Make a Module Available to Scripts
==================================
{{#include ../../links.md}}
Use Case 1 &ndash; Make It Globally Available
---------------------------------------------
`Engine::register_global_module` registers a shared [module] into the
[_global_ namespace][function namespace].
This is by far the easiest way to expose a [module]'s functionalities to Rhai.
```admonish tip.small "Tip: No qualifiers"
All [functions], [variables]/[constants] and [type iterators] can be accessed without
_namespace qualifiers_.
```
```admonish warning.small
[Sub-modules][module] are **ignored**.
```
```rust
use rhai::{Engine, Module, FuncRegistration};
let mut module = Module::new(); // new module
// Add new function.
FuncRegistration::new("inc")
.with_params_info(&["x: i64", "i64"])
.set_into_module(&mut module, |x: i64| x + 1);
// Use 'Module::set_var' to add variables.
module.set_var("MYSTIC_NUMBER", 41_i64);
// Register the module into the global namespace of the Engine.
let mut engine = Engine::new();
engine.register_global_module(module.into());
// No need to import module...
engine.eval::<i64>("inc(MYSTIC_NUMBER)")? == 42;
```
### Equivalent to `Engine::register_XXX`
```admonish question.side "Trivia"
`Engine::register_fn` etc. are actually implemented by adding functions to an
internal [module]!
```
Registering a [module] via `Engine::register_global_module` is essentially the _same_
as calling `Engine::register_fn` (or any of the `Engine::register_XXX` API) individually
on each top-level function within that [module].
```rust
// The above is essentially the same as:
let mut engine = Engine::new();
engine.register_fn("inc", |x: i64| x + 1);
engine.eval::<i64>("inc(41)")? == 42; // no need to import module
```
Use Case 2 &ndash; Make It a Static Namespace
---------------------------------------------
`Engine::register_static_module` registers a [module] and under a specific
[module namespace][function namespace].
```rust
use rhai::{Engine, Module, FuncRegistration};
let mut module = Module::new(); // new module
// Add new function.
FuncRegistration::new("inc")
.with_params_info(&["x: i64", "i64"])
.set_into_module(&mut module, |x: i64| x + 1);
// Use 'Module::set_var' to add variables.
module.set_var("MYSTIC_NUMBER", 41_i64);
// Register the module into the Engine as the static module namespace path
// 'services::calc'
let mut engine = Engine::new();
engine.register_static_module("services::calc", module.into());
// Refer to the 'services::calc' module...
engine.eval::<i64>("services::calc::inc(services::calc::MYSTIC_NUMBER)")? == 42;
```
### Expose functions to the global namespace
```admonish tip.side "Tip: Type iterators"
[Type iterators] are special &mdash; they are _always_ exposed to the
[_global_ namespace][function namespace].
```
The [`Module`] API can optionally expose functions to the [_global_ namespace][function namespace]
by setting the `namespace` parameter to `FnNamespace::Global`.
This way, [getters/setters] and [indexers] for [custom types] can work as expected.
```rust
use rhai::{Engine, Module, FuncRegistration, FnNamespace};
let mut module = Module::new(); // new module
// Add new function.
FuncRegistration::new("inc")
.with_params_info(&["x: i64", "i64"])
.with_namespace(FnNamespace::Global) // <- global namespace
.set_into_module(&mut module, |x: i64| x + 1);
// Use 'Module::set_var' to add variables.
module.set_var("MYSTIC_NUMBER", 41_i64);
// Register the module into the Engine as a static module namespace 'calc'
let mut engine = Engine::new();
engine.register_static_module("calc", module.into());
// 'inc' works when qualified by the namespace
engine.eval::<i64>("calc::inc(calc::MYSTIC_NUMBER)")? == 42;
// 'inc' also works without a namespace qualifier
// because it is exposed to the global namespace
engine.eval::<i64>("let x = calc::MYSTIC_NUMBER; x.inc()")? == 42;
engine.eval::<i64>("let x = calc::MYSTIC_NUMBER; inc(x)")? == 42;
```
Use Case 3 &ndash; Make It Dynamically Loadable
-----------------------------------------------
In order to dynamically load a custom module, there must be a [module resolver] which serves
the module when loaded via `import` statements.
The easiest way is to use, for example, the [`StaticModuleResolver`][module resolver] to hold such
a custom module.
```rust
use rhai::{Engine, Scope, Module, FuncRegistration};
use rhai::module_resolvers::StaticModuleResolver;
let mut module = Module::new(); // new module
module.set_var("answer", 41_i64); // variable 'answer' under module
FuncRegistration::new("inc")
.with_params_info(&["x: i64"])
.set_into_module(&mut module, |x: i64| x + 1);
// Create the module resolver
let mut resolver = StaticModuleResolver::new();
// Add the module into the module resolver under the name 'question'
// They module can then be accessed via: 'import "question" as q;'
resolver.insert("question", module);
// Set the module resolver into the 'Engine'
let mut engine = Engine::new();
engine.set_module_resolver(resolver);
// Use namespace-qualified variables
engine.eval::<i64>(
r#"
import "question" as q;
q::answer + 1
"#)? == 42;
// Call namespace-qualified functions
engine.eval::<i64>(
r#"
import "question" as q;
q::inc(q::answer)
"#)? == 42;
```