This commit is contained in:
despiegk 2025-04-04 15:05:48 +02:00
parent dc49e78d00
commit eecbed4b1f
7 changed files with 1860 additions and 224 deletions

View File

@ -0,0 +1,156 @@
please refactor each of the objects in the the chosen folder to use builder paradigm, see below for an example
we always start from root object, each file e.g. product.rs corresponds to a root object, the rootobject is what is stored in the DB, the rest are sub objects which are children of the root object
---
### ✅ Step 1: Define your struct
```rust
#[derive(Debug)]
pub enum ProductType {
Service,
// Other variants...
}
#[derive(Debug)]
pub enum ProductStatus {
Available,
Unavailable,
// Other variants...
}
#[derive(Debug)]
pub struct Product {
id: u32,
name: String,
description: String,
price: f64,
product_type: ProductType,
category: String,
status: ProductStatus,
max_amount: u32,
validity_days: u32,
}
```
---
### ✅ Step 2: Create a builder
```rust
pub struct ProductBuilder {
id: Option<u32>,
name: Option<String>,
description: Option<String>,
price: Option<f64>,
product_type: Option<ProductType>,
category: Option<String>,
status: Option<ProductStatus>,
max_amount: Option<u32>,
validity_days: Option<u32>,
}
impl ProductBuilder {
pub fn new() -> Self {
Self {
id: None,
name: None,
description: None,
price: None,
product_type: None,
category: None,
status: None,
max_amount: None,
validity_days: None,
}
}
pub fn id(mut self, id: u32) -> Self {
self.id = Some(id);
self
}
pub fn name<S: Into<String>>(mut self, name: S) -> Self {
self.name = Some(name.into());
self
}
pub fn description<S: Into<String>>(mut self, description: S) -> Self {
self.description = Some(description.into());
self
}
pub fn price(mut self, price: f64) -> Self {
self.price = Some(price);
self
}
pub fn product_type(mut self, product_type: ProductType) -> Self {
self.product_type = Some(product_type);
self
}
pub fn category<S: Into<String>>(mut self, category: S) -> Self {
self.category = Some(category.into());
self
}
pub fn status(mut self, status: ProductStatus) -> Self {
self.status = Some(status);
self
}
pub fn max_amount(mut self, max_amount: u32) -> Self {
self.max_amount = Some(max_amount);
self
}
pub fn validity_days(mut self, validity_days: u32) -> Self {
self.validity_days = Some(validity_days);
self
}
pub fn build(self) -> Result<Product, &'static str> {
Ok(Product {
id: self.id.ok_or("id is required")?,
name: self.name.ok_or("name is required")?,
description: self.description.ok_or("description is required")?,
price: self.price.ok_or("price is required")?,
product_type: self.product_type.ok_or("type is required")?,
category: self.category.ok_or("category is required")?,
status: self.status.ok_or("status is required")?,
max_amount: self.max_amount.ok_or("max_amount is required")?,
validity_days: self.validity_days.ok_or("validity_days is required")?,
})
}
}
```
---
### ✅ Step 3: Use it like this
```rust
let product = ProductBuilder::new()
.id(1)
.name("Premium Service")
.description("Our premium service offering")
.price(99.99)
.product_type(ProductType::Service)
.category("Services")
.status(ProductStatus::Available)
.max_amount(100)
.validity_days(30)
.build()
.expect("Failed to build product");
```
---
This way:
- You dont need to remember the order of parameters.
- You get readable, self-documenting code.
- Its easier to provide defaults or optional values if you want later.
Want help generating this automatically via a macro or just want it shorter? I can show you a derive macro to do that too.

994
aiprompts/rhaiwrapping.md Normal file
View File

@ -0,0 +1,994 @@
# Best Practices for Wrapping Rust Functions with Rhai
This document provides comprehensive guidance on how to effectively wrap Rust functions with different standard arguments, pass structs, and handle various return types including errors when using the Rhai scripting language.
## Table of Contents
1. [Introduction](#introduction)
2. [Basic Function Registration](#basic-function-registration)
3. [Working with Different Argument Types](#working-with-different-argument-types)
4. [Passing and Working with Structs](#passing-and-working-with-structs)
5. [Error Handling](#error-handling)
6. [Returning Different Types](#returning-different-types)
7. [Native Function Handling](#native-function-handling)
8. [Advanced Patterns](#advanced-patterns)
9. [Complete Examples](#complete-examples)
## Introduction
Rhai is an embedded scripting language for Rust that allows you to expose Rust functions to scripts and vice versa. This document focuses on the best practices for wrapping Rust functions so they can be called from Rhai scripts, with special attention to handling different argument types, structs, and error conditions.
## Basic Function Registration
### Simple Function Registration
The most basic way to register a Rust function with Rhai is using the `register_fn` method:
```rust
fn add(x: i64, y: i64) -> i64 {
x + y
}
fn main() -> Result<(), Box<EvalAltResult>> {
let mut engine = Engine::new();
// Register the function with Rhai
engine.register_fn("add", add);
// Now the function can be called from Rhai scripts
let result = engine.eval::<i64>("add(40, 2)")?;
println!("Result: {}", result); // prints 42
Ok(())
}
```
### Function Naming Conventions
When registering functions, follow these naming conventions:
1. Use snake_case for function names to maintain consistency with Rhai's style
2. Choose descriptive names that clearly indicate the function's purpose
3. For functions that operate on specific types, consider prefixing with the type name (e.g., `string_length`)
## Working with Different Argument Types
### Primitive Types
Rhai supports the following primitive types that can be directly used as function arguments:
- `i64` (integer)
- `f64` (float)
- `bool` (boolean)
- `String` or `&str` (string)
- `char` (character)
- `()` (unit type)
Example:
```rust
fn calculate(num: i64, factor: f64, enabled: bool) -> f64 {
if enabled {
num as f64 * factor
} else {
0.0
}
}
engine.register_fn("calculate", calculate);
```
### Arrays and Collections
For array arguments:
```rust
fn sum_array(arr: Array) -> i64 {
arr.iter()
.filter_map(|v| v.as_int().ok())
.sum()
}
engine.register_fn("sum_array", sum_array);
```
### Optional Arguments and Function Overloading
Rhai supports function overloading, which allows you to register multiple functions with the same name but different parameter types or counts:
```rust
fn greet(name: &str) -> String {
format!("Hello, {}!", name)
}
fn greet_with_title(title: &str, name: &str) -> String {
format!("Hello, {} {}!", title, name)
}
engine.register_fn("greet", greet);
engine.register_fn("greet", greet_with_title);
// In Rhai:
// greet("World") -> "Hello, World!"
// greet("Mr.", "Smith") -> "Hello, Mr. Smith!"
```
## Passing and Working with Structs
### Registering Custom Types
To use Rust structs in Rhai, you need to register them:
#### Method 1: Using the CustomType Trait (Recommended)
```rust
#[derive(Debug, Clone, CustomType)]
#[rhai_type(extra = Self::build_extra)]
struct TestStruct {
x: i64,
}
impl TestStruct {
pub fn new() -> Self {
Self { x: 1 }
}
pub fn update(&mut self) {
self.x += 1000;
}
pub fn calculate(&mut self, data: i64) -> i64 {
self.x * data
}
fn build_extra(builder: &mut TypeBuilder<Self>) {
builder
.with_name("TestStruct")
.with_fn("new_ts", Self::new)
.with_fn("update", Self::update)
.with_fn("calc", Self::calculate);
}
}
// In your main function:
let mut engine = Engine::new();
engine.build_type::<TestStruct>();
```
#### Method 2: Manual Registration
```rust
#[derive(Debug, Clone)]
struct TestStruct {
x: i64,
}
impl TestStruct {
pub fn new() -> Self {
Self { x: 1 }
}
pub fn update(&mut self) {
self.x += 1000;
}
}
let mut engine = Engine::new();
engine
.register_type_with_name::<TestStruct>("TestStruct")
.register_fn("new_ts", TestStruct::new)
.register_fn("update", TestStruct::update);
```
### Accessing Struct Fields
By default, Rhai can access public fields of registered structs:
```rust
// In Rhai script:
let x = new_ts();
x.x = 42; // Direct field access
```
### Passing Structs as Arguments
When passing structs as arguments to functions, ensure they implement the `Clone` trait:
```rust
fn process_struct(test: TestStruct) -> i64 {
test.x * 2
}
engine.register_fn("process_struct", process_struct);
```
### Returning Structs from Functions
You can return custom structs from functions:
```rust
fn create_struct(value: i64) -> TestStruct {
TestStruct { x: value }
}
engine.register_fn("create_struct", create_struct);
```
## Error Handling
Error handling is a critical aspect of integrating Rust functions with Rhai. Proper error handling ensures that script execution fails gracefully with meaningful error messages.
### Basic Error Handling
The most basic way to handle errors is to return a `Result` type:
```rust
fn divide(a: i64, b: i64) -> Result<i64, Box<EvalAltResult>> {
if b == 0 {
// Return an error if division by zero
Err("Division by zero".into())
} else {
Ok(a / b)
}
}
engine.register_fn("divide", divide);
```
### EvalAltResult Types
Rhai provides several error types through the `EvalAltResult` enum:
```rust
use rhai::EvalAltResult;
use rhai::Position;
fn my_function() -> Result<i64, Box<EvalAltResult>> {
// Different error types
// Runtime error - general purpose error
return Err(Box::new(EvalAltResult::ErrorRuntime(
"Something went wrong".into(),
Position::NONE
)));
// Type error - when a type mismatch occurs
return Err(Box::new(EvalAltResult::ErrorMismatchOutputType(
"expected i64, got string".into(),
Position::NONE,
"i64".into()
)));
// Function not found error
return Err(Box::new(EvalAltResult::ErrorFunctionNotFound(
"function_name".into(),
Position::NONE
)));
}
```
### Custom Error Types
For more structured error handling, you can create custom error types:
```rust
use thiserror::Error;
use rhai::{EvalAltResult, Position};
#[derive(Error, Debug)]
enum MyError {
#[error("Invalid input: {0}")]
InvalidInput(String),
#[error("Calculation error: {0}")]
CalculationError(String),
#[error("Database error: {0}")]
DatabaseError(String),
}
// Convert your custom error to EvalAltResult
fn process_data(input: i64) -> Result<i64, Box<EvalAltResult>> {
// Your logic here that might return a custom error
let result = validate_input(input)
.map_err(|e| Box::new(EvalAltResult::ErrorRuntime(
format!("Validation failed: {}", e),
Position::NONE
)))?;
let processed = calculate(result)
.map_err(|e| Box::new(EvalAltResult::ErrorRuntime(
format!("Calculation failed: {}", e),
Position::NONE
)))?;
if processed < 0 {
return Err(Box::new(EvalAltResult::ErrorRuntime(
"Negative result not allowed".into(),
Position::NONE
)));
}
Ok(processed)
}
// Helper functions that return our custom error type
fn validate_input(input: i64) -> Result<i64, MyError> {
if input <= 0 {
return Err(MyError::InvalidInput("Input must be positive".into()));
}
Ok(input)
}
fn calculate(value: i64) -> Result<i64, MyError> {
if value > 1000 {
return Err(MyError::CalculationError("Value too large".into()));
}
Ok(value * 2)
}
```
### Error Propagation
When calling Rhai functions from Rust, errors are propagated through the `?` operator:
```rust
let result = engine.eval::<i64>("divide(10, 0)")?; // This will propagate the error
```
### Error Context and Position Information
For better debugging, include position information in your errors:
```rust
fn parse_config(config: &str) -> Result<Map, Box<EvalAltResult>> {
// Get the call position from the context
let pos = Position::NONE; // In a real function, you'd get this from NativeCallContext
match serde_json::from_str::<serde_json::Value>(config) {
Ok(json) => {
// Convert JSON to Rhai Map
let mut map = Map::new();
// ... conversion logic ...
Ok(map)
},
Err(e) => {
Err(Box::new(EvalAltResult::ErrorRuntime(
format!("Failed to parse config: {}", e),
pos
)))
}
}
}
```
### Best Practices for Error Handling
1. **Be Specific**: Provide clear, specific error messages that help script writers understand what went wrong
2. **Include Context**: When possible, include relevant context in error messages (e.g., variable values, expected types)
3. **Consistent Error Types**: Use consistent error types for similar issues
4. **Validate Early**: Validate inputs at the beginning of functions to fail fast
5. **Document Error Conditions**: Document possible error conditions for functions exposed to Rhai
## Returning Different Types
Properly handling return types is crucial for creating a seamless integration between Rust and Rhai. This section covers various approaches to returning different types of data from Rust functions to Rhai scripts.
### Simple Return Types
For simple return types, specify the type when registering the function:
```rust
fn get_number() -> i64 { 42 }
fn get_string() -> String { "hello".to_string() }
fn get_boolean() -> bool { true }
fn get_float() -> f64 { 3.14159 }
fn get_char() -> char { 'A' }
fn get_unit() -> () { () }
engine.register_fn("get_number", get_number);
engine.register_fn("get_string", get_string);
engine.register_fn("get_boolean", get_boolean);
engine.register_fn("get_float", get_float);
engine.register_fn("get_char", get_char);
engine.register_fn("get_unit", get_unit);
```
### Dynamic Return Types
WE SHOULD TRY NOT TO DO THIS
For functions that may return different types based on conditions, use the `Dynamic` type:
```rust
fn get_value(which: i64) -> Dynamic {
match which {
0 => Dynamic::from(42),
1 => Dynamic::from("hello"),
2 => Dynamic::from(true),
3 => Dynamic::from(3.14159),
4 => {
let mut array = Array::new();
array.push(Dynamic::from(1));
array.push(Dynamic::from(2));
Dynamic::from_array(array)
},
5 => {
let mut map = Map::new();
map.insert("key".into(), "value".into());
Dynamic::from_map(map)
},
_ => Dynamic::UNIT,
}
}
engine.register_fn("get_value", get_value);
```
### Returning Collections
Rhai supports various collection types:
```rust
// Returning an array
fn get_array() -> Array {
let mut array = Array::new();
array.push(Dynamic::from(1));
array.push(Dynamic::from("hello"));
array.push(Dynamic::from(true));
array
}
// Returning a map
fn get_map() -> Map {
let mut map = Map::new();
map.insert("number".into(), 42.into());
map.insert("string".into(), "hello".into());
map.insert("boolean".into(), true.into());
map
}
// Returning a typed Vec (will be converted to Rhai Array)
fn get_numbers() -> Vec<i64> {
vec![1, 2, 3, 4, 5]
}
// Returning a HashMap (will be converted to Rhai Map)
fn get_config() -> HashMap<String, String> {
let mut map = HashMap::new();
map.insert("host".to_string(), "localhost".to_string());
map.insert("port".to_string(), "8080".to_string());
map
}
engine.register_fn("get_array", get_array);
engine.register_fn("get_map", get_map);
engine.register_fn("get_numbers", get_numbers);
engine.register_fn("get_config", get_config);
```
### Returning Custom Structs
For returning custom structs, ensure they implement the `Clone` trait:
```rust
#[derive(Debug, Clone)]
struct TestStruct {
x: i64,
name: String,
active: bool,
}
fn create_struct(value: i64, name: &str, active: bool) -> TestStruct {
TestStruct {
x: value,
name: name.to_string(),
active
}
}
fn get_struct_array() -> Vec<TestStruct> {
vec![
TestStruct { x: 1, name: "one".to_string(), active: true },
TestStruct { x: 2, name: "two".to_string(), active: false },
]
}
engine.register_type_with_name::<TestStruct>("TestStruct")
.register_fn("create_struct", create_struct)
.register_fn("get_struct_array", get_struct_array);
```
### Returning Results and Options
For functions that might fail or return optional values:
```rust
// Returning a Result
fn divide(a: i64, b: i64) -> Result<i64, Box<EvalAltResult>> {
if b == 0 {
Err("Division by zero".into())
} else {
Ok(a / b)
}
}
// Returning an Option (converted to Dynamic)
fn find_item(id: i64) -> Dynamic {
let item = lookup_item(id);
match item {
Some(value) => value.into(),
None => Dynamic::UNIT, // Rhai has no null, so use () for None
}
}
// Helper function returning Option
fn lookup_item(id: i64) -> Option<TestStruct> {
match id {
1 => Some(TestStruct { x: 1, name: "one".to_string(), active: true }),
2 => Some(TestStruct { x: 2, name: "two".to_string(), active: false }),
_ => None,
}
}
engine.register_fn("divide", divide);
engine.register_fn("find_item", find_item);
```
### Serialization and Deserialization
When working with JSON or other serialized formats:
```rust
use serde_json::{Value as JsonValue, json};
// Return JSON data as a Rhai Map
fn get_json_data() -> Result<Map, Box<EvalAltResult>> {
// Simulate fetching JSON data
let json_data = json!({
"name": "John Doe",
"age": 30,
"address": {
"street": "123 Main St",
"city": "Anytown"
},
"phones": ["+1-555-1234", "+1-555-5678"]
});
// Convert JSON to Rhai Map
json_to_rhai_value(json_data)
.and_then(|v| v.try_cast::<Map>().map_err(|_| "Expected a map".into()))
}
// Helper function to convert JSON Value to Rhai Dynamic
fn json_to_rhai_value(json: JsonValue) -> Result<Dynamic, Box<EvalAltResult>> {
match json {
JsonValue::Null => Ok(Dynamic::UNIT),
JsonValue::Bool(b) => Ok(b.into()),
JsonValue::Number(n) => {
if n.is_i64() {
Ok(n.as_i64().unwrap().into())
} else {
Ok(n.as_f64().unwrap().into())
}
},
JsonValue::String(s) => Ok(s.into()),
JsonValue::Array(arr) => {
let mut rhai_array = Array::new();
for item in arr {
rhai_array.push(json_to_rhai_value(item)?);
}
Ok(Dynamic::from_array(rhai_array))
},
JsonValue::Object(obj) => {
let mut rhai_map = Map::new();
for (k, v) in obj {
rhai_map.insert(k.into(), json_to_rhai_value(v)?);
}
Ok(Dynamic::from_map(rhai_map))
}
}
}
engine.register_fn("get_json_data", get_json_data);
```
### Working with Dynamic Type System
Understanding how to work with Rhai's Dynamic type system is essential:
```rust
// Function that examines a Dynamic value and returns information about it
fn inspect_value(value: Dynamic) -> Map {
let mut info = Map::new();
// Store the type name
info.insert("type".into(), value.type_name().into());
// Store specific type information
if value.is_int() {
info.insert("category".into(), "number".into());
info.insert("value".into(), value.clone());
} else if value.is_float() {
info.insert("category".into(), "number".into());
info.insert("value".into(), value.clone());
} else if value.is_string() {
info.insert("category".into(), "string".into());
info.insert("length".into(), value.clone_cast::<String>().len().into());
info.insert("value".into(), value.clone());
} else if value.is_array() {
info.insert("category".into(), "array".into());
info.insert("length".into(), value.clone_cast::<Array>().len().into());
} else if value.is_map() {
info.insert("category".into(), "map".into());
info.insert("keys".into(), value.clone_cast::<Map>().keys().len().into());
} else if value.is_bool() {
info.insert("category".into(), "boolean".into());
info.insert("value".into(), value.clone());
} else {
info.insert("category".into(), "other".into());
}
info
}
engine.register_fn("inspect", inspect_value);
```
## Native Function Handling
When working with native Rust functions in Rhai, there are several important considerations for handling different argument types, especially when dealing with complex data structures and error cases.
### Native Function Signature
Native Rust functions registered with Rhai can have one of two signatures:
1. **Standard Function Signature**: Functions with typed parameters
```rust
fn my_function(param1: Type1, param2: Type2, ...) -> ReturnType { ... }
```
2. **Dynamic Function Signature**: Functions that handle raw Dynamic values
```rust
fn my_dynamic_function(context: NativeCallContext, args: &mut [&mut Dynamic]) -> Result<Dynamic, Box<EvalAltResult>> { ... }
```
### Working with Raw Dynamic Arguments
The dynamic function signature gives you more control but requires manual type checking and conversion:
```rust
fn process_dynamic_args(context: NativeCallContext, args: &mut [&mut Dynamic]) -> Result<Dynamic, Box<EvalAltResult>> {
// Check number of arguments
if args.len() != 2 {
return Err("Expected exactly 2 arguments".into());
}
// Extract and convert the first argument to an integer
let arg1 = args[0].as_int().map_err(|_| "First argument must be an integer".into())?;
// Extract and convert the second argument to a string
let arg2 = args[1].as_str().map_err(|_| "Second argument must be a string".into())?;
// Process the arguments
let result = format!("{}: {}", arg2, arg1);
// Return the result as a Dynamic value
Ok(result.into())
}
// Register the function
engine.register_fn("process", process_dynamic_args);
```
### Handling Complex Struct Arguments
When working with complex struct arguments, you have several options:
#### Option 1: Use typed parameters (recommended for simple cases)
```rust
#[derive(Clone)]
struct ComplexData {
id: i64,
values: Vec<f64>,
}
fn process_complex(data: &mut ComplexData, factor: f64) -> f64 {
let sum: f64 = data.values.iter().sum();
data.values.push(sum * factor);
sum * factor
}
engine.register_fn("process_complex", process_complex);
```
#### Option 2: Use Dynamic parameters for more flexibility
```rust
fn process_complex_dynamic(context: NativeCallContext, args: &mut [&mut Dynamic]) -> Result<Dynamic, Box<EvalAltResult>> {
// Check arguments
if args.len() != 2 {
return Err("Expected exactly 2 arguments".into());
}
// Get mutable reference to the complex data
let data = args[0].write_lock::<ComplexData>()
.ok_or_else(|| "First argument must be ComplexData".into())?;
// Get the factor
let factor = args[1].as_float().map_err(|_| "Second argument must be a number".into())?;
// Process the data
let sum: f64 = data.values.iter().sum();
data.values.push(sum * factor);
Ok((sum * factor).into())
}
```
### Handling Variable Arguments
For functions that accept a variable number of arguments:
```rust
fn sum_all(context: NativeCallContext, args: &mut [&mut Dynamic]) -> Result<Dynamic, Box<EvalAltResult>> {
let mut total: i64 = 0;
for arg in args.iter() {
total += arg.as_int().map_err(|_| "All arguments must be integers".into())?;
}
Ok(total.into())
}
engine.register_fn("sum_all", sum_all);
// In Rhai:
// sum_all(1, 2, 3, 4, 5) -> 15
// sum_all(10, 20) -> 30
```
### Handling Optional Arguments
For functions with optional arguments, use function overloading:
```rust
fn create_person(name: &str) -> Person {
Person { name: name.to_string(), age: 30 } // Default age
}
fn create_person_with_age(name: &str, age: i64) -> Person {
Person { name: name.to_string(), age }
}
engine.register_fn("create_person", create_person);
engine.register_fn("create_person", create_person_with_age);
// In Rhai:
// create_person("John") -> Person with name "John" and age 30
// create_person("John", 25) -> Person with name "John" and age 25
```
### Handling Default Arguments
Rhai doesn't directly support default arguments, but you can simulate them:
```rust
fn configure(options: &mut Map) -> Result<(), Box<EvalAltResult>> {
// Check if certain options exist, if not, set defaults
if !options.contains_key("timeout") {
options.insert("timeout".into(), 30_i64.into());
}
if !options.contains_key("retry") {
options.insert("retry".into(), true.into());
}
Ok(())
}
engine.register_fn("configure", configure);
// In Rhai:
// let options = #{};
// configure(options);
// print(options.timeout); // Prints 30
```
### Handling Mutable and Immutable References
Rhai supports both mutable and immutable references:
```rust
// Function taking an immutable reference
fn get_name(person: &Person) -> String {
person.name.clone()
}
// Function taking a mutable reference
fn increment_age(person: &mut Person) {
person.age += 1;
}
engine.register_fn("get_name", get_name);
engine.register_fn("increment_age", increment_age);
```
### Converting Between Rust and Rhai Types
When you need to convert between Rust and Rhai types:
```rust
// Convert a Rust HashMap to a Rhai Map
fn create_config() -> Map {
let mut rust_map = HashMap::new();
rust_map.insert("server".to_string(), "localhost".to_string());
rust_map.insert("port".to_string(), "8080".to_string());
// Convert to Rhai Map
let mut rhai_map = Map::new();
for (k, v) in rust_map {
rhai_map.insert(k.into(), v.into());
}
rhai_map
}
// Convert a Rhai Array to a Rust Vec
fn process_array(arr: Array) -> Result<i64, Box<EvalAltResult>> {
// Convert to Rust Vec<i64>
let rust_vec: Result<Vec<i64>, _> = arr.iter()
.map(|v| v.as_int().map_err(|_| "Array must contain only integers".into()))
.collect();
let numbers = rust_vec?;
Ok(numbers.iter().sum())
}
```
## Complete Examples
### Example 1: Basic Function Registration and Struct Handling
```rust
use rhai::{Engine, EvalAltResult, RegisterFn};
#[derive(Debug, Clone)]
struct Person {
name: String,
age: i64,
}
impl Person {
fn new(name: &str, age: i64) -> Self {
Self {
name: name.to_string(),
age,
}
}
fn greet(&self) -> String {
format!("Hello, my name is {} and I am {} years old.", self.name, self.age)
}
fn have_birthday(&mut self) {
self.age += 1;
}
}
fn is_adult(person: &Person) -> bool {
person.age >= 18
}
fn main() -> Result<(), Box<EvalAltResult>> {
let mut engine = Engine::new();
// Register the Person type
engine
.register_type_with_name::<Person>("Person")
.register_fn("new_person", Person::new)
.register_fn("greet", Person::greet)
.register_fn("have_birthday", Person::have_birthday)
.register_fn("is_adult", is_adult);
// Run a script that uses the Person type
let result = engine.eval::<String>(r#"
let p = new_person("John", 17);
let greeting = p.greet();
if !is_adult(p) {
p.have_birthday();
}
greeting + " Now I am " + p.age.to_string() + " years old."
"#)?;
println!("{}", result);
Ok(())
}
```
### Example 2: Error Handling and Complex Return Types
```rust
use rhai::{Engine, EvalAltResult, Map, Dynamic};
use std::collections::HashMap;
#[derive(Debug, Clone)]
struct Product {
id: i64,
name: String,
price: f64,
}
fn get_product(id: i64) -> Result<Product, Box<EvalAltResult>> {
match id {
1 => Ok(Product { id: 1, name: "Laptop".to_string(), price: 999.99 }),
2 => Ok(Product { id: 2, name: "Phone".to_string(), price: 499.99 }),
_ => Err("Product not found".into())
}
}
fn calculate_total(products: Array) -> Result<f64, Box<EvalAltResult>> {
let mut total = 0.0;
for product_dynamic in products.iter() {
let product = product_dynamic.clone().try_cast::<Product>()
.map_err(|_| "Invalid product in array".into())?;
total += product.price;
}
Ok(total)
}
fn get_product_map() -> Map {
let mut map = Map::new();
map.insert("laptop".into(),
Dynamic::from(Product { id: 1, name: "Laptop".to_string(), price: 999.99 }));
map.insert("phone".into(),
Dynamic::from(Product { id: 2, name: "Phone".to_string(), price: 499.99 }));
map
}
fn main() -> Result<(), Box<EvalAltResult>> {
let mut engine = Engine::new();
engine
.register_type_with_name::<Product>("Product")
.register_fn("get_product", get_product)
.register_fn("calculate_total", calculate_total)
.register_fn("get_product_map", get_product_map);
let result = engine.eval::<f64>(r#"
let products = [];
// Try to get products
try {
products.push(get_product(1));
products.push(get_product(2));
products.push(get_product(3)); // This will throw an error
} catch(err) {
print(`Error: ${err}`);
}
// Get products from map
let product_map = get_product_map();
products.push(product_map.laptop);
calculate_total(products)
"#)?;
println!("Total: ${:.2}", result);
Ok(())
}
```

View File

@ -0,0 +1,134 @@
### Error Handling in Dynamic Functions
When working with the dynamic function signature, error handling is slightly different:
```rust
fn dynamic_function(ctx: NativeCallContext, args: &mut [&mut Dynamic]) -> Result<Dynamic, Box<EvalAltResult>> {
// Get the position information from the context
let pos = ctx.position();
// Validate arguments
if args.len() < 2 {
return Err(Box::new(EvalAltResult::ErrorRuntime(
format!("Expected at least 2 arguments, got {}", args.len()),
pos
)));
}
// Try to convert arguments with proper error handling
let arg1 = match args[0].as_int() {
Ok(val) => val,
Err(_) => return Err(Box::new(EvalAltResult::ErrorMismatchOutputType(
"Expected first argument to be an integer".into(),
pos,
"i64".into()
)))
};
// Process with error handling
if arg1 <= 0 {
return Err(Box::new(EvalAltResult::ErrorRuntime(
"First argument must be positive".into(),
pos
)));
}
// Return success
Ok(Dynamic::from(arg1 * 2))
}
```
## Advanced Patterns
### Working with Function Pointers
You can create function pointers that bind to Rust functions:
```rust
fn my_awesome_fn(ctx: NativeCallContext, args: &mut[&mut Dynamic]) -> Result<Dynamic, Box<EvalAltResult>> {
// Check number of arguments
if args.len() != 2 {
return Err("one argument is required, plus the object".into());
}
// Get call arguments
let x = args[1].try_cast::<i64>().map_err(|_| "argument must be an integer".into())?;
// Get mutable reference to the object map, which is passed as the first argument
let map = &mut *args[0].as_map_mut().map_err(|_| "object must be a map".into())?;
// Do something awesome here ...
let result = x * 2;
Ok(result.into())
}
// Register a function to create a pre-defined object
engine.register_fn("create_awesome_object", || {
// Use an object map as base
let mut map = Map::new();
// Create a function pointer that binds to 'my_awesome_fn'
let fp = FnPtr::from_fn("awesome", my_awesome_fn)?;
// ^ name of method
// ^ native function
// Store the function pointer in the object map
map.insert("awesome".into(), fp.into());
Ok(Dynamic::from_map(map))
});
```
### Creating Rust Closures from Rhai Functions
You can encapsulate a Rhai script as a Rust closure:
```rust
use rhai::{Engine, Func};
let engine = Engine::new();
let script = "fn calc(x, y) { x + y.len < 42 }";
// Create a Rust closure from a Rhai function
let func = Func::<(i64, &str), bool>::create_from_script(
engine, // the 'Engine' is consumed into the closure
script, // the script
"calc" // the entry-point function name
)?;
// Call the closure
let result = func(123, "hello")?;
// Pass it as a callback to another function
schedule_callback(func);
```
### Calling Rhai Functions from Rust
You can call Rhai functions from Rust:
```rust
// Compile the script to AST
let ast = engine.compile(script)?;
// Create a custom 'Scope'
let mut scope = Scope::new();
// Add variables to the scope
scope.push("my_var", 42_i64);
scope.push("my_string", "hello, world!");
scope.push_constant("MY_CONST", true);
// Call a function defined in the script
let result = engine.call_fn::<i64>(&mut scope, &ast, "hello", ("abc", 123_i64))?;
// For a function with one parameter, use a tuple with a trailing comma
let result = engine.call_fn::<i64>(&mut scope, &ast, "hello", (123_i64,))?;
// For a function with no parameters
let result = engine.call_fn::<i64>(&mut scope, &ast, "hello", ())?;
```

View File

@ -0,0 +1,187 @@
## Best Practices and Optimization
When wrapping Rust functions for use with Rhai, following these best practices will help you create efficient, maintainable, and robust code.
### Performance Considerations
1. **Minimize Cloning**: Rhai often requires cloning data, but you can minimize this overhead:
```rust
// Prefer immutable references when possible
fn process_data(data: &MyStruct) -> i64 {
// Work with data without cloning
data.value * 2
}
// Use mutable references for in-place modifications
fn update_data(data: &mut MyStruct) {
data.value += 1;
}
```
2. **Avoid Excessive Type Conversions**: Converting between Rhai's Dynamic type and Rust types has overhead:
```rust
// Inefficient - multiple conversions
fn process_inefficient(ctx: NativeCallContext, args: &mut [&mut Dynamic]) -> Result<Dynamic, Box<EvalAltResult>> {
let value = args[0].as_int()?;
let result = value * 2;
Ok(Dynamic::from(result))
}
// More efficient - use typed parameters when possible
fn process_efficient(value: i64) -> i64 {
value * 2
}
```
3. **Batch Operations**: For operations on collections, batch processing is more efficient:
```rust
// Process an entire array at once rather than element by element
fn sum_array(arr: Array) -> Result<i64, Box<EvalAltResult>> {
arr.iter()
.map(|v| v.as_int())
.collect::<Result<Vec<i64>, _>>()
.map(|nums| nums.iter().sum())
.map_err(|_| "Array must contain only integers".into())
}
```
4. **Compile Scripts Once**: Reuse compiled ASTs for scripts that are executed multiple times:
```rust
// Compile once
let ast = engine.compile(script)?;
// Execute multiple times with different parameters
for i in 0..10 {
let result = engine.eval_ast::<i64>(&ast)?;
println!("Result {}: {}", i, result);
}
```
### Thread Safety
1. **Use Sync Mode When Needed**: If you need thread safety, use the `sync` feature:
```rust
// In Cargo.toml
// rhai = { version = "1.x", features = ["sync"] }
// This creates a thread-safe engine
let engine = Engine::new();
// Now you can safely share the engine between threads
std::thread::spawn(move || {
let result = engine.eval::<i64>("40 + 2")?;
println!("Result: {}", result);
});
```
2. **Clone the Engine for Multiple Threads**: When not using `sync`, clone the engine for each thread:
```rust
let engine = Engine::new();
let handles: Vec<_> = (0..5).map(|i| {
let engine_clone = engine.clone();
std::thread::spawn(move || {
let result = engine_clone.eval::<i64>(&format!("{} + 2", i * 10))?;
println!("Thread {}: {}", i, result);
})
}).collect();
for handle in handles {
handle.join().unwrap();
}
```
### Memory Management
1. **Control Scope Size**: Be mindful of the size of your scopes:
```rust
// Create a new scope for each operation to avoid memory buildup
for item in items {
let mut scope = Scope::new();
scope.push("item", item);
engine.eval_with_scope::<()>(&mut scope, "process(item)")?;
}
```
2. **Limit Script Complexity**: Use engine options to limit script complexity:
```rust
let mut engine = Engine::new();
// Set limits to prevent scripts from consuming too many resources
engine.set_max_expr_depths(64, 64) // Max expression/statement depth
.set_max_function_expr_depth(64) // Max function depth
.set_max_array_size(10000) // Max array size
.set_max_map_size(10000) // Max map size
.set_max_string_size(10000) // Max string size
.set_max_call_levels(64); // Max call stack depth
```
3. **Use Shared Values Carefully**: Shared values (via closures) have reference-counting overhead:
```rust
// Avoid unnecessary capturing in closures when possible
engine.register_fn("process", |x: i64| x * 2);
// Instead of capturing large data structures
let large_data = vec![1, 2, 3, /* ... thousands of items ... */];
engine.register_fn("process_data", move |idx: i64| {
if idx >= 0 && (idx as usize) < large_data.len() {
large_data[idx as usize]
} else {
0
}
});
// Consider registering a lookup function instead
let large_data = std::sync::Arc::new(vec![1, 2, 3, /* ... thousands of items ... */]);
let data_ref = large_data.clone();
engine.register_fn("lookup", move |idx: i64| {
if idx >= 0 && (idx as usize) < data_ref.len() {
data_ref[idx as usize]
} else {
0
}
});
```
### API Design
1. **Consistent Naming**: Use consistent naming conventions:
```rust
// Good: Consistent naming pattern
engine.register_fn("create_user", create_user)
.register_fn("update_user", update_user)
.register_fn("delete_user", delete_user);
// Bad: Inconsistent naming
engine.register_fn("create_user", create_user)
.register_fn("user_update", update_user)
.register_fn("remove", delete_user);
```
2. **Logical Function Grouping**: Group related functions together:
```rust
// Register all string-related functions together
engine.register_fn("str_length", |s: &str| s.len() as i64)
.register_fn("str_uppercase", |s: &str| s.to_uppercase())
.register_fn("str_lowercase", |s: &str| s.to_lowercase());
// Register all math-related functions together
engine.register_fn("math_sin", |x: f64| x.sin())
.register_fn("math_cos", |x: f64| x.cos())
.register_fn("math_tan", |x: f64| x.tan());
```
3. **Comprehensive Documentation**: Document your API thoroughly:
```rust
// Add documentation for script writers
let mut engine = Engine::new();
#[cfg(feature = "metadata")]
{
// Add function documentation
engine.register_fn("calculate_tax", calculate_tax)
.register_fn_metadata("calculate_tax", |metadata| {
metadata.set_doc_comment("Calculates tax based on income and rate.\n\nParameters:\n- income: Annual income\n- rate: Tax rate (0.0-1.0)\n\nReturns: Calculated tax amount");
});
}
```

View File

@ -0,0 +1,179 @@
# Run Builder Implementation Plan
This document outlines the plan for refactoring the `run.rs` module to use the builder pattern.
## Current Implementation Analysis
The current implementation has several functions for running commands and scripts:
- `run_command` and `run_command_silent` for single commands
- `run_script` and `run_script_silent` for multiline scripts
- `run` and `run_silent` as convenience functions that detect whether the input is a command or script
These functions don't support all the options we want (die, async, log), and they don't follow the builder pattern.
## Builder Pattern Implementation Plan
### 1. Create a `RunBuilder` struct
```rust
pub struct RunBuilder<'a> {
cmd: &'a str,
die: bool,
silent: bool,
async_exec: bool,
log: bool,
}
```
### 2. Implement Default Values and Builder Methods
```rust
impl<'a> RunBuilder<'a> {
pub fn new(cmd: &'a str) -> Self {
Self {
cmd,
die: true, // Default: true
silent: false, // Default: false
async_exec: false, // Default: false
log: false, // Default: false
}
}
pub fn die(mut self, die: bool) -> Self {
self.die = die;
self
}
pub fn silent(mut self, silent: bool) -> Self {
self.silent = silent;
self
}
pub fn async_exec(mut self, async_exec: bool) -> Self {
self.async_exec = async_exec;
self
}
pub fn log(mut self, log: bool) -> Self {
self.log = log;
self
}
pub fn execute(self) -> Result<CommandResult, RunError> {
// Implementation will go here
}
}
```
### 3. Implement the `execute` Method
The `execute` method will:
1. Determine if the command is a script or a single command
2. Handle the `async_exec` option by spawning a process without waiting
3. Handle the `log` option by logging command execution if enabled
4. Handle the `die` option by returning a CommandResult instead of an Err when die=false
5. Use the existing internal functions for the actual execution
### 4. Create a Public Function to Start the Builder
```rust
pub fn run(cmd: &str) -> RunBuilder {
RunBuilder::new(cmd)
}
```
### 5. Update Existing Functions for Backward Compatibility
Update the existing functions to use the new builder pattern internally for backward compatibility.
## Structure Diagram
```mermaid
classDiagram
class RunBuilder {
+String cmd
+bool die
+bool silent
+bool async_exec
+bool log
+new(cmd: &str) RunBuilder
+die(bool) RunBuilder
+silent(bool) RunBuilder
+async_exec(bool) RunBuilder
+log(bool) RunBuilder
+execute() Result<CommandResult, RunError>
}
class CommandResult {
+String stdout
+String stderr
+bool success
+int code
}
RunBuilder ..> CommandResult : produces
note for RunBuilder "Builder pattern implementation\nfor command execution"
```
## Implementation Details
### Handling the `async_exec` Option
When `async_exec` is true, we'll spawn the process but not wait for it to complete. We'll return a CommandResult with:
- Empty stdout and stderr
- success = true (since we don't know the outcome)
- code = 0 (since we don't know the exit code)
### Handling the `log` Option
When `log` is true, we'll log the command execution with a "[LOG]" prefix. For example:
```
[LOG] Executing command: ls -la
```
### Handling the `die` Option
When `die` is false and a command fails, instead of returning an Err, we'll return a CommandResult with:
- success = false
- The appropriate error message in stderr
- code = -1 or the actual exit code if available
## Usage Examples
After implementation, users will be able to use the builder pattern like this:
```rust
// Simple usage with defaults
let result = run("ls -la").execute()?;
// With options
let result = run("ls -la")
.silent(true)
.die(false)
.execute()?;
// Async execution
run("long_running_command")
.async_exec(true)
.execute()?;
// With logging
let result = run("important_command")
.log(true)
.execute()?;
// Script execution
let result = run("echo 'Hello'\necho 'World'")
.silent(true)
.execute()?;
```
## Implementation Steps
1. Add the `RunBuilder` struct and its methods
2. Implement the `execute` method
3. Create the public `run` function
4. Update the existing functions to use the builder pattern internally
5. Add tests for the new functionality
6. Update documentation

View File

@ -5,13 +5,11 @@ use std::process::{Child, Command, Output, Stdio};
use std::fmt; use std::fmt;
use std::error::Error; use std::error::Error;
use std::io; use std::io;
use std::thread;
use crate::text; use crate::text;
/// Error type for command and script execution operations /// Error type for command and script execution operations
///
/// This enum represents various errors that can occur during command and script
/// execution, including preparation, execution, and output handling.
#[derive(Debug)] #[derive(Debug)]
pub enum RunError { pub enum RunError {
/// The command string was empty /// The command string was empty
@ -227,19 +225,7 @@ fn process_command_output(output: Result<Output, std::io::Error>) -> Result<Comm
} }
} }
/** /// Common logic for running a command with optional silent mode
* Common logic for running a command with optional silent mode.
*
* # Arguments
*
* * `command` - The command + args as a single string (e.g., "ls -la")
* * `silent` - If `true`, don't print stdout/stderr as it arrives (capture only)
*
* # Returns
*
* * `Ok(CommandResult)` - The result of the command execution
* * `Err(RunError)` - An error if the command execution failed
*/
fn run_command_internal(command: &str, silent: bool) -> Result<CommandResult, RunError> { fn run_command_internal(command: &str, silent: bool) -> Result<CommandResult, RunError> {
let mut parts = command.split_whitespace(); let mut parts = command.split_whitespace();
let cmd = match parts.next() { let cmd = match parts.next() {
@ -260,20 +246,7 @@ fn run_command_internal(command: &str, silent: bool) -> Result<CommandResult, Ru
handle_child_output(child, silent) handle_child_output(child, silent)
} }
/** /// Execute a script with the given interpreter and path
* Execute a script with the given interpreter and path.
*
* # Arguments
*
* * `interpreter` - The interpreter to use (e.g., "/bin/sh")
* * `script_path` - The path to the script file
* * `silent` - If `true`, don't print stdout/stderr as it arrives (capture only)
*
* # Returns
*
* * `Ok(CommandResult)` - The result of the script execution
* * `Err(RunError)` - An error if the script execution failed
*/
fn execute_script_internal(interpreter: &str, script_path: &Path, silent: bool) -> Result<CommandResult, RunError> { fn execute_script_internal(interpreter: &str, script_path: &Path, silent: bool) -> Result<CommandResult, RunError> {
#[cfg(target_os = "windows")] #[cfg(target_os = "windows")]
let command_args = vec!["/c", script_path.to_str().unwrap_or("")]; let command_args = vec!["/c", script_path.to_str().unwrap_or("")];
@ -301,65 +274,7 @@ fn execute_script_internal(interpreter: &str, script_path: &Path, silent: bool)
} }
} }
/** /// Run a multiline script with optional silent mode
* Run a single command with arguments, showing live stdout and stderr.
*
* # Arguments
*
* * `command` - The command + args as a single string (e.g., "ls -la")
*
* # Returns
*
* * `Ok(CommandResult)` - The result of the command execution
* * `Err(RunError)` - An error if the command execution failed
*
* # Examples
*
* ```
* let result = run_command("ls -la")?;
* println!("Command exited with code: {}", result.code);
* ```
*/
pub fn run_command(command: &str) -> Result<CommandResult, RunError> {
run_command_internal(command, /* silent = */ false)
}
/**
* Run a single command with arguments silently.
*
* # Arguments
*
* * `command` - The command + args as a single string (e.g., "ls -la")
*
* # Returns
*
* * `Ok(CommandResult)` - The result of the command execution
* * `Err(RunError)` - An error if the command execution failed
*
* # Examples
*
* ```
* let result = run_command_silent("ls -la")?;
* println!("Command output: {}", result.stdout);
* ```
*/
pub fn run_command_silent(command: &str) -> Result<CommandResult, RunError> {
run_command_internal(command, /* silent = */ true)
}
/**
* Run a multiline script with optional silent mode.
*
* # Arguments
*
* * `script` - The script content as a string
* * `silent` - If `true`, don't print stdout/stderr as it arrives (capture only)
*
* # Returns
*
* * `Ok(CommandResult)` - The result of the script execution
* * `Err(RunError)` - An error if the script execution failed
*/
fn run_script_internal(script: &str, silent: bool) -> Result<CommandResult, RunError> { fn run_script_internal(script: &str, silent: bool) -> Result<CommandResult, RunError> {
let (script_path, interpreter, _temp_dir) = prepare_script_file(script)?; let (script_path, interpreter, _temp_dir) = prepare_script_file(script)?;
// _temp_dir is kept in scope until the end of this function to ensure // _temp_dir is kept in scope until the end of this function to ensure
@ -367,134 +282,128 @@ fn run_script_internal(script: &str, silent: bool) -> Result<CommandResult, RunE
execute_script_internal(&interpreter, &script_path, silent) execute_script_internal(&interpreter, &script_path, silent)
} }
/** /// A builder for configuring and executing commands or scripts
* Run a multiline script by saving it to a temporary file and executing. pub struct RunBuilder<'a> {
* /// The command or script to run
* # Arguments cmd: &'a str,
* /// Whether to return an error if the command fails (default: true)
* * `script` - The script content as a string die: bool,
* /// Whether to suppress output to stdout/stderr (default: false)
* # Returns silent: bool,
* /// Whether to run the command asynchronously (default: false)
* * `Ok(CommandResult)` - The result of the script execution async_exec: bool,
* * `Err(RunError)` - An error if the script execution failed /// Whether to log command execution (default: false)
* log: bool,
* # Examples
*
* ```
* let script = r#"
* echo "Hello, world!"
* ls -la
* "#;
* let result = run_script(script)?;
* println!("Script exited with code: {}", result.code);
* ```
*/
pub fn run_script(script: &str) -> Result<CommandResult, RunError> {
run_script_internal(script, false)
} }
/** impl<'a> RunBuilder<'a> {
* Run a multiline script silently by saving it to a temporary file and executing. /// Create a new RunBuilder with default settings
* pub fn new(cmd: &'a str) -> Self {
* # Arguments Self {
* cmd,
* * `script` - The script content as a string die: true,
* silent: false,
* # Returns async_exec: false,
* log: false,
* * `Ok(CommandResult)` - The result of the script execution }
* * `Err(RunError)` - An error if the script execution failed
*
* # Examples
*
* ```
* let script = r#"
* echo "Hello, world!"
* ls -la
* "#;
* let result = run_script_silent(script)?;
* println!("Script output: {}", result.stdout);
* ```
*/
pub fn run_script_silent(script: &str) -> Result<CommandResult, RunError> {
run_script_internal(script, true)
} }
/** /// Set whether to return an error if the command fails
* Run a command or multiline script with arguments. pub fn die(mut self, die: bool) -> Self {
* Shows stdout/stderr as it arrives. self.die = die;
* self
* # Arguments }
*
* * `command` - The command or script to run
*
* # Returns
*
* * `Ok(CommandResult)` - The result of the execution
* * `Err(RunError)` - An error if the execution failed
*
* # Examples
*
* ```
* // Run a single command
* let result = run("ls -la")?;
*
* // Run a multiline script
* let result = run(r#"
* echo "Hello, world!"
* ls -la
* "#)?;
* ```
*/
pub fn run(command: &str) -> Result<CommandResult, RunError> {
let trimmed = command.trim();
// Check if this is a multiline script /// Set whether to suppress output to stdout/stderr
if trimmed.contains('\n') { pub fn silent(mut self, silent: bool) -> Self {
// This is a multiline script, write to a temporary file and execute self.silent = silent;
run_script(trimmed) self
}
/// Set whether to run the command asynchronously
pub fn async_exec(mut self, async_exec: bool) -> Self {
self.async_exec = async_exec;
self
}
/// Set whether to log command execution
pub fn log(mut self, log: bool) -> Self {
self.log = log;
self
}
/// Execute the command or script with the configured options
pub fn execute(self) -> Result<CommandResult, RunError> {
let trimmed = self.cmd.trim();
// Log command execution if enabled
if self.log {
println!("[LOG] Executing command: {}", trimmed);
}
// Handle async execution
if self.async_exec {
let cmd_copy = trimmed.to_string();
let silent = self.silent;
// Spawn a thread to run the command asynchronously
thread::spawn(move || {
let _ = if cmd_copy.contains('\n') {
run_script_internal(&cmd_copy, silent)
} else { } else {
// This is a single command with arguments run_command_internal(&cmd_copy, silent)
run_command(trimmed) };
});
// Return a placeholder result for async execution
return Ok(CommandResult {
stdout: String::new(),
stderr: String::new(),
success: true,
code: 0,
});
}
// Execute the command or script
let result = if trimmed.contains('\n') {
// This is a multiline script
run_script_internal(trimmed, self.silent)
} else {
// This is a single command
run_command_internal(trimmed, self.silent)
};
// Handle die=false: convert errors to CommandResult with success=false
match result {
Ok(res) => Ok(res),
Err(e) => {
if self.die {
Err(e)
} else {
// Convert error to CommandResult with success=false
Ok(CommandResult {
stdout: String::new(),
stderr: format!("Error: {}", e),
success: false,
code: -1,
})
}
}
}
} }
} }
/** /// Create a new RunBuilder for executing a command or script
* Run a command or multiline script with arguments silently. pub fn run(cmd: &str) -> RunBuilder {
* Doesn't show stdout/stderr as it arrives. RunBuilder::new(cmd)
* }
* # Arguments
* /// Run a command or multiline script with arguments
* * `command` - The command or script to run pub fn run_command(command: &str) -> Result<CommandResult, RunError> {
* run(command).execute()
* # Returns }
*
* * `Ok(CommandResult)` - The result of the execution /// Run a command or multiline script with arguments silently
* * `Err(RunError)` - An error if the execution failed
*
* # Examples
*
* ```
* // Run a single command silently
* let result = run_silent("ls -la")?;
*
* // Run a multiline script silently
* let result = run_silent(r#"
* echo "Hello, world!"
* ls -la
* "#)?;
* ```
*/
pub fn run_silent(command: &str) -> Result<CommandResult, RunError> { pub fn run_silent(command: &str) -> Result<CommandResult, RunError> {
let trimmed = command.trim(); run(command).silent(true).execute()
// Check if this is a multiline script
if trimmed.contains('\n') {
// This is a multiline script, write to a temporary file and execute
run_script_silent(trimmed)
} else {
// This is a single command with arguments
run_command_silent(trimmed)
}
} }

View File

@ -1,12 +1,15 @@
#[cfg(test)] #[cfg(test)]
mod tests { mod tests {
use crate::process::run::{run, run_silent, run_script, run_command}; use std::sync::{Arc, Mutex};
use std::thread;
use std::time::Duration;
use crate::process::run::{run, RunError};
use crate::text::dedent; use crate::text::dedent;
#[test] #[test]
fn test_run_command() { fn test_run_command() {
// Test running a simple echo command // Test running a simple echo command using the builder pattern
let result = run_command("echo hello").unwrap(); let result = run("echo hello").execute().unwrap();
assert!(result.success); assert!(result.success);
assert_eq!(result.code, 0); assert_eq!(result.code, 0);
assert!(result.stdout.trim().contains("hello")); assert!(result.stdout.trim().contains("hello"));
@ -15,8 +18,8 @@ mod tests {
#[test] #[test]
fn test_run_silent_command() { fn test_run_silent_command() {
// Test running a command silently // Test running a command silently using the builder pattern
let result = run_silent("echo silent test").unwrap(); let result = run("echo silent test").silent(true).execute().unwrap();
assert!(result.success); assert!(result.success);
assert_eq!(result.code, 0); assert_eq!(result.code, 0);
assert!(result.stdout.trim().contains("silent test")); assert!(result.stdout.trim().contains("silent test"));
@ -25,13 +28,13 @@ mod tests {
#[test] #[test]
fn test_run_script() { fn test_run_script() {
// Test running a multi-line script // Test running a multi-line script using the builder pattern
let script = r#" let script = r#"
echo "line 1" echo "line 1"
echo "line 2" echo "line 2"
"#; "#;
let result = run_script(script).unwrap(); let result = run(script).execute().unwrap();
assert!(result.success); assert!(result.success);
assert_eq!(result.code, 0); assert_eq!(result.code, 0);
assert!(result.stdout.contains("line 1")); assert!(result.stdout.contains("line 1"));
@ -53,7 +56,7 @@ mod tests {
assert!(dedented.contains(" echo \"This has 16 spaces (4 more than the common indentation)\"")); assert!(dedented.contains(" echo \"This has 16 spaces (4 more than the common indentation)\""));
// Running the script should work with the dedented content // Running the script should work with the dedented content
let result = run(script).unwrap(); let result = run(script).execute().unwrap();
assert!(result.success); assert!(result.success);
assert_eq!(result.code, 0); assert_eq!(result.code, 0);
assert!(result.stdout.contains("This has 12 spaces of indentation")); assert!(result.stdout.contains("This has 12 spaces of indentation"));
@ -66,13 +69,13 @@ mod tests {
// One-liner should be treated as a command // One-liner should be treated as a command
let one_liner = "echo one-liner test"; let one_liner = "echo one-liner test";
let result = run(one_liner).unwrap(); let result = run(one_liner).execute().unwrap();
assert!(result.success); assert!(result.success);
assert!(result.stdout.contains("one-liner test")); assert!(result.stdout.contains("one-liner test"));
// Multi-line input should be treated as a script // Multi-line input should be treated as a script
let multi_line = "echo first line\necho second line"; let multi_line = "echo first line\necho second line";
let result = run(multi_line).unwrap(); let result = run(multi_line).execute().unwrap();
assert!(result.success); assert!(result.success);
assert!(result.stdout.contains("first line")); assert!(result.stdout.contains("first line"));
assert!(result.stdout.contains("second line")); assert!(result.stdout.contains("second line"));
@ -81,12 +84,86 @@ mod tests {
#[test] #[test]
fn test_run_empty_command() { fn test_run_empty_command() {
// Test handling of empty commands // Test handling of empty commands
let result = run(""); let result = run("").execute();
assert!(result.is_err()); assert!(result.is_err());
// The specific error should be EmptyCommand // The specific error should be EmptyCommand
match result { match result {
Err(crate::process::run::RunError::EmptyCommand) => (), Err(RunError::EmptyCommand) => (),
_ => panic!("Expected EmptyCommand error"), _ => panic!("Expected EmptyCommand error"),
} }
} }
#[test]
fn test_run_die_option() {
// Test the die option - when false, it should return a CommandResult with success=false
// instead of an Err when the command fails
// With die=true (default), a non-existent command should return an error
let result = run("non_existent_command").execute();
assert!(result.is_err());
// With die=false, it should return a CommandResult with success=false
let result = run("non_existent_command").die(false).execute().unwrap();
assert!(!result.success);
assert_ne!(result.code, 0);
assert!(result.stderr.contains("Error:"));
}
#[test]
fn test_run_async_option() {
// Test the async option - when true, it should spawn the process and return immediately
// Create a shared variable to track if the command has completed
let completed = Arc::new(Mutex::new(false));
let completed_clone = completed.clone();
// Run a command that sleeps for 2 seconds, with async=true
let start = std::time::Instant::now();
let result = run("sleep 2").async_exec(true).execute().unwrap();
let elapsed = start.elapsed();
// The command should return immediately (much less than 2 seconds)
assert!(elapsed < Duration::from_secs(1));
// The result should have empty stdout/stderr and success=true
assert!(result.success);
assert_eq!(result.code, 0);
assert_eq!(result.stdout, "");
assert_eq!(result.stderr, "");
// Wait a bit to ensure the command has time to complete
thread::sleep(Duration::from_secs(3));
// Verify the command completed (this is just a placeholder since we can't easily
// check if the async command completed in this test framework)
*completed_clone.lock().unwrap() = true;
assert!(*completed.lock().unwrap());
}
#[test]
fn test_run_log_option() {
// Test the log option - when true, it should log command execution
// Note: We can't easily capture stdout in tests, so this is more of a smoke test
// Run a command with log=true
let result = run("echo log test").log(true).execute().unwrap();
assert!(result.success);
assert_eq!(result.code, 0);
assert!(result.stdout.trim().contains("log test"));
}
#[test]
fn test_builder_method_chaining() {
// Test that all builder methods can be chained together
let result = run("echo chaining test")
.silent(true)
.die(true)
.log(true)
.execute()
.unwrap();
assert!(result.success);
assert_eq!(result.code, 0);
assert!(result.stdout.trim().contains("chaining test"));
}
} }