sal/vault/src/key/asymmetric.rs
Lee Smet 7f55cf4fba
Add tests for asymmetric keys, add public key export
Signed-off-by: Lee Smet <lee.smet@hotmail.com>
2025-05-16 15:05:45 +02:00

162 lines
5.6 KiB
Rust

//! An implementation of asymmetric cryptography using SECP256k1 ECDH with ChaCha20Poly1305
//! for the actual encryption.
use k256::{SecretKey, ecdh::diffie_hellman, elliptic_curve::sec1::ToEncodedPoint};
use sha2::Sha256;
use crate::{error::CryptoError, key::symmetric::SymmetricKey};
/// A keypair for use in asymmetric encryption operations.
pub struct AsymmetricKeypair {
/// Private part of the key
private: SecretKey,
/// Public part of the key
public: k256::PublicKey,
}
/// The public key part of an asymmetric keypair.
#[derive(Debug, PartialEq, Eq)]
pub struct PublicKey(k256::PublicKey);
impl AsymmetricKeypair {
/// Generates a new random keypair
pub fn new() -> Result<Self, CryptoError> {
let mut raw_private = [0u8; 32];
rand::fill(&mut raw_private);
let sk = SecretKey::from_slice(&raw_private)
.expect("Key is provided generated with fixed valid size");
let pk = sk.public_key();
Ok(Self {
private: sk,
public: pk,
})
}
/// Create a new key from existing bytes.
pub(crate) fn from_bytes(bytes: &[u8]) -> Result<Self, CryptoError> {
if bytes.len() == 32 {
let sk = SecretKey::from_slice(&bytes).expect("Key was checked to be a valid size");
let pk = sk.public_key();
Ok(Self {
private: sk,
public: pk,
})
} else {
Err(CryptoError::InvalidKeySize)
}
}
/// View the raw bytes of the private key of this keypair.
pub(crate) fn as_raw_private_key(&self) -> Vec<u8> {
self.private.as_scalar_primitive().to_bytes().to_vec()
}
/// Get the public part of this keypair.
pub fn public_key(&self) -> PublicKey {
PublicKey(self.public.clone())
}
/// Encrypt data for a receiver. First a shared secret is derived using the own private key and
/// the receivers public key. Then, this shared secret is used for symmetric encryption of the
/// plaintext. The receiver can decrypt this by generating the same shared secret, using his
/// own private key and our public key.
pub fn encrypt(
&self,
remote_key: &PublicKey,
plaintext: &[u8],
) -> Result<Vec<u8>, CryptoError> {
let mut symmetric_key = [0u8; 32];
diffie_hellman(self.private.to_nonzero_scalar(), remote_key.0.as_affine())
.extract::<Sha256>(None)
.expand(&[], &mut symmetric_key)
.map_err(|_| CryptoError::InvalidKeySize)?;
let sym_key = SymmetricKey::from_bytes(&symmetric_key)?;
sym_key.encrypt(plaintext)
}
/// Decrypt data from a sender. The remote key must be the public key of the keypair used by
/// the sender to encrypt this message.
pub fn decrypt(
&self,
remote_key: &PublicKey,
ciphertext: &[u8],
) -> Result<Vec<u8>, CryptoError> {
let mut symmetric_key = [0u8; 32];
diffie_hellman(self.private.to_nonzero_scalar(), remote_key.0.as_affine())
.extract::<Sha256>(None)
.expand(&[], &mut symmetric_key)
.map_err(|_| CryptoError::InvalidKeySize)?;
let sym_key = SymmetricKey::from_bytes(&symmetric_key)?;
sym_key.decrypt(ciphertext)
}
}
impl PublicKey {
/// Import a public key from raw bytes
pub fn from_bytes(bytes: &[u8]) -> Result<Self, CryptoError> {
Ok(Self(k256::PublicKey::from_sec1_bytes(bytes)?))
}
/// Get the raw bytes of this `PublicKey`, which can be transferred to another party.
///
/// The public key is SEC-1 encoded and compressed.
pub fn as_bytes(&self) -> Box<[u8]> {
self.0.to_encoded_point(true).to_bytes()
}
}
#[cfg(test)]
mod tests {
/// Export a public key and import it later
#[test]
fn import_public_key() {
let kp = super::AsymmetricKeypair::new().expect("Can generate new keypair");
let pk1 = kp.public_key();
let pk_bytes = pk1.as_bytes();
let pk2 = super::PublicKey::from_bytes(&pk_bytes).expect("Can import public key");
assert_eq!(pk1, pk2);
}
/// Make sure 2 random keypairs derive the same shared secret (and thus encryption key), by
/// encrypting a random message, decrypting it, and verifying it matches.
#[test]
fn encrypt_and_decrypt() {
let kp1 = super::AsymmetricKeypair::new().expect("Can generate new keypair");
let kp2 = super::AsymmetricKeypair::new().expect("Can generate new keypair");
let pk1 = kp1.public_key();
let pk2 = kp2.public_key();
let message = b"this is a random message to encrypt and decrypt";
let enc = kp1.encrypt(&pk2, message).expect("Can encrypt message");
let dec = kp2.decrypt(&pk1, &enc).expect("Can decrypt message");
assert_eq!(message.as_slice(), dec.as_slice());
}
/// Use a different public key for decrypting than the expected one, this should fail the
/// decryption process as we use AEAD encryption with the symmetric key.
#[test]
fn decrypt_with_wrong_key() {
let kp1 = super::AsymmetricKeypair::new().expect("Can generate new keypair");
let kp2 = super::AsymmetricKeypair::new().expect("Can generate new keypair");
let kp3 = super::AsymmetricKeypair::new().expect("Can generate new keypair");
let pk2 = kp2.public_key();
let pk3 = kp3.public_key();
let message = b"this is a random message to encrypt and decrypt";
let enc = kp1.encrypt(&pk2, message).expect("Can encrypt message");
let dec = kp2.decrypt(&pk3, &enc);
assert!(dec.is_err());
}
}