feat: Add SessionManager for ergonomic key management

This commit is contained in:
2025-05-16 00:15:07 +03:00
parent 791752c3a5
commit 73233ec69b
10 changed files with 870 additions and 4 deletions

View File

@@ -0,0 +1,188 @@
# EVM Client Architecture & Implementation Plan
## Project Goal
Build a cross-platform (native + WASM) EVM client that can:
- Interact with multiple EVM-compatible networks/providers
- Use pluggable signing backends (e.g., SessionManager, hardware wallets, mocks)
- Integrate seamlessly with Rhai scripting and the rest of the modular Rust workspace
---
## Requirements & Principles
- **Async, modular, and testable**: All APIs are async and trait-based
- **Cross-platform**: Native (Rust) and WASM (browser) support
- **Multi-network**: Support for multiple EVM networks/providers, switchable at runtime
- **Pluggable signing**: No direct dependency on vault/session; uses a generic Signer trait
- **Consistency**: Follows conventions in architecture.md and other project docs
- **Scripting**: Exposes ergonomic API for both Rust and Rhai scripting
---
## Recommended File Structure
```
evm_client/
├── Cargo.toml
└── src/
├── lib.rs # Public API
├── provider.rs # EvmProvider abstraction
├── client.rs # EvmClient struct
├── signer.rs # Signer trait
└── utils.rs # Helpers (e.g., HTTP, WASM glue)
```
---
## 1. Pluggable Signer Trait
```rust
// signer.rs
#[async_trait::async_trait]
pub trait Signer {
async fn sign(&self, message: &[u8]) -> Result<Vec<u8>, EvmError>;
fn address(&self) -> String;
}
```
- `SessionManager` in vault implements this trait.
- Any other backend (mock, hardware wallet, etc.) can implement it.
---
## 2. EvmProvider Abstraction
```rust
// provider.rs
pub enum EvmProvider {
Http { name: String, url: String, chain_id: u64 },
// Future: WebSocket, Infura, etc.
}
impl EvmProvider {
pub async fn send_raw_transaction<S: Signer>(&self, tx: &Transaction, signer: &S) -> Result<TxHash, EvmError> {
let raw_tx = tx.sign(signer).await?;
let body = format!("{{\"raw\":\"{}\"}}", hex::encode(&raw_tx));
match self {
EvmProvider::Http { url, .. } => {
http_post(url, &body).await
}
}
}
}
```
---
## 3. EvmClient Struct & API
```rust
// client.rs
use std::collections::HashMap;
pub struct EvmClient<S: Signer> {
providers: HashMap<String, EvmProvider>,
current: String,
signer: S,
}
impl<S: Signer> EvmClient<S> {
pub fn new(signer: S) -> Self {
Self {
providers: HashMap::new(),
current: String::new(),
signer,
}
}
pub fn add_provider(&mut self, key: String, provider: EvmProvider) {
self.providers.insert(key, provider);
}
pub fn set_current(&mut self, key: &str) -> Result<(), EvmError> {
if self.providers.contains_key(key) {
self.current = key.to_string();
Ok(())
} else {
Err(EvmError::UnknownNetwork)
}
}
pub fn current_provider(&self) -> Option<&EvmProvider> {
self.providers.get(&self.current)
}
pub async fn send_transaction(&self, tx: Transaction) -> Result<TxHash, EvmError> {
let provider = self.current_provider().ok_or(EvmError::NoNetwork)?;
provider.send_raw_transaction(&tx, &self.signer).await
}
}
```
---
## 4. Cross-Platform Networking (Native + WASM)
```rust
// utils.rs
pub async fn http_post(url: &str, body: &str) -> Result<TxHash, EvmError> {
#[cfg(not(target_arch = "wasm32"))]
{
let resp = reqwest::Client::new().post(url).body(body.to_owned()).send().await?;
// parse response...
Ok(parse_tx_hash(resp.text().await?))
}
#[cfg(target_arch = "wasm32")]
{
let resp = gloo_net::http::Request::post(url).body(body).send().await?;
// parse response...
Ok(parse_tx_hash(resp.text().await?))
}
}
```
---
## 5. Rhai Scripting Integration
```rust
// rhai_bindings.rs
pub fn register_rhai_api(engine: &mut Engine) {
engine.register_type::<EvmClient<MySigner>>();
engine.register_fn("add_network", EvmClient::add_provider);
engine.register_fn("switch_network", EvmClient::set_current);
engine.register_fn("send_tx", EvmClient::send_transaction);
}
```
---
## 6. Usage Example
```rust
use evm_client::{EvmClient, EvmProvider, Signer};
use vault::SessionManager;
let mut client = EvmClient::new(session_manager);
client.add_provider("mainnet".into(), EvmProvider::Http { name: "Ethereum Mainnet".into(), url: "...".into(), chain_id: 1 });
client.add_provider("polygon".into(), EvmProvider::Http { name: "Polygon".into(), url: "...".into(), chain_id: 137 });
client.set_current("polygon")?;
let tx_hash = client.send_transaction(tx).await?;
```
---
## 7. Compliance & Consistency
- **Async/trait-based**: Like kvstore/vault, all APIs are async and trait-based
- **No direct dependencies**: Uses generic Signer, not vault/session directly
- **Cross-platform**: Uses conditional networking for native/WASM
- **Modular/testable**: Clear separation of provider, client, and signer logic
- **Rhai scripting**: Exposes ergonomic scripting API
- **Follows architecture.md**: Modular, layered, reusable, and extensible
---
## 8. Open Questions / TODOs
- How to handle provider-specific errors and retries?
- Should we support WebSocket providers in v1?
- What subset of EVM JSON-RPC should be exposed to Rhai?
- How to best test WASM networking in CI?
---
*Last updated: 2025-05-16*

View File

@@ -0,0 +1,341 @@
# Rhai Scripting System Architecture & Implementation Plan
## Project Goal
Build a system that allows users to write and execute Rhai scripts both:
- **Locally via a CLI**, and
- **In the browser via a browser extension**
using the same core logic (the `vault` and `evm_client` crates), powered by a Rust WebAssembly module.
---
## Requirements & Architecture
### 1. Shared Rust Libraries
- **Core Libraries:**
- `vault/`: Cryptographic vault and session management
- `evm_client/`: EVM RPC client
- **Responsibilities:**
- Implement business logic
- Expose functions to the Rhai scripting engine
- Reusable in both native CLI and WebAssembly builds
### 2. Recommended File Structure
```
rhai_sandbox_workspace/
├── Cargo.toml # Workspace manifest
├── vault/ # Shared logic + Rhai bindings
│ ├── Cargo.toml
│ └── src/
│ ├── lib.rs # Public API (all core logic)
│ ├── rhai_bindings.rs# Rhai registration (shared)
│ └── utils.rs # Any helpers
├── cli/ # CLI runner
│ ├── Cargo.toml
│ └── src/
│ └── main.rs
├── wasm/ # Wasm runner using same API
│ ├── Cargo.toml
│ └── src/
│ └── lib.rs
├── browser-extension/ # (optional) Extension frontend
│ ├── manifest.json
│ ├── index.html
│ └── index.js
```
### 3. Code Organization for Shared Rhai Bindings
**In `vault/src/lib.rs`:**
```rust
pub mod rhai_bindings;
pub use rhai_bindings::register_rhai_api;
pub fn fib(n: i64) -> i64 {
if n < 2 { n } else { fib(n - 1) + fib(n - 2) }
}
```
**In `vault/src/rhai_bindings.rs`:**
```rust
use rhai::{Engine, RegisterFn};
use crate::fib;
pub fn register_rhai_api(engine: &mut Engine) {
engine.register_fn("fib", fib);
}
```
**Using in CLI (`cli/src/main.rs`):**
```rust
use rhai::Engine;
use vault::register_rhai_api;
use std::env;
use std::fs;
fn main() {
let args: Vec<String> = env::args().collect();
if args.len() != 2 {
eprintln!("Usage: cli <script.rhai>");
return;
}
let script = fs::read_to_string(&args[1]).expect("Failed to read script");
let mut engine = Engine::new();
register_rhai_api(&mut engine);
match engine.eval::<i64>(&script) {
Ok(result) => println!("Result: {}", result),
Err(e) => eprintln!("Error: {}", e),
}
}
```
**Using in WASM (`wasm/src/lib.rs`):**
```rust
use wasm_bindgen::prelude::*;
use rhai::Engine;
use vault::register_rhai_api;
#[wasm_bindgen]
pub fn run_rhai(script: &str) -> JsValue {
let mut engine = Engine::new();
register_rhai_api(&mut engine);
match engine.eval_expression::<i64>(script) {
Ok(res) => JsValue::from_f64(res as f64),
Err(e) => JsValue::from_str(&format!("Error: {}", e)),
}
}
```
**Benefits:**
- Single source of truth for Rhai bindings (`register_rhai_api`)
- Easy to expand: add more Rust functions and register in one place
- Works seamlessly across CLI and WASM
- Encourages code reuse and maintainability
**This approach fully adheres to the principles in `architecture.md`**:
- Modular, layered design
- Code reuse across targets
- Shared business logic for both native and WASM
- Clean separation of platform-specific code
### 4. Native CLI Tool (`cli/`)
- Accepts `.rhai` script file or stdin
- Uses shared libraries to run the script via the Rhai engine
- Outputs the result to the terminal
### 5. WebAssembly Module (`wasm/`)
- Uses the same core library for Rhai logic
- Exposes a `run_rhai(script: &str) -> String` function via `wasm_bindgen`
- Usable from browser-based JS (e.g., `import { run_rhai }`)
### 4. Browser Extension (`browser_extension/`)
- UI for user to enter Rhai code after loading keyspace and selecting keypair (using SessionManager)
- Loads the WebAssembly module
- Runs user input through `run_rhai(script)`
- Displays the result or error
- **Security:**
- Only allows script input from:
- Trusted websites (via content script injection)
- Extension popup UI---
## EVM Client Integration: Pluggable Signer Pattern
---
## Cross-Platform, Multi-Network EvmClient Design
To be consistent with the rest of the project and adhere to the architecture and modularity principles, the `evm_client` crate should:
- Use async APIs and traits for all network and signing operations
- Support both native and WASM (browser) environments via conditional compilation
- Allow dynamic switching between multiple EVM networks/providers at runtime
- Avoid direct dependencies on vault/session, using the pluggable Signer trait
- Expose a clear, ergonomic API for both Rust and Rhai scripting
### 1. EvmProvider Abstraction
```rust
pub enum EvmProvider {
Http { name: String, url: String, chain_id: u64 },
// Future: WebSocket, Infura, etc.
}
```
### 2. EvmClient Struct
```rust
use std::collections::HashMap;
pub struct EvmClient<S: Signer> {
providers: HashMap<String, EvmProvider>,
current: String,
signer: S,
}
impl<S: Signer> EvmClient<S> {
pub fn new(signer: S) -> Self {
Self {
providers: HashMap::new(),
current: String::new(),
signer,
}
}
pub fn add_provider(&mut self, key: String, provider: EvmProvider) {
self.providers.insert(key, provider);
}
pub fn set_current(&mut self, key: &str) -> Result<(), EvmError> {
if self.providers.contains_key(key) {
self.current = key.to_string();
Ok(())
} else {
Err(EvmError::UnknownNetwork)
}
}
pub fn current_provider(&self) -> Option<&EvmProvider> {
self.providers.get(&self.current)
}
pub async fn send_transaction(&self, tx: Transaction) -> Result<TxHash, EvmError> {
let provider = self.current_provider().ok_or(EvmError::NoNetwork)?;
provider.send_raw_transaction(&tx, &self.signer).await
}
}
```
### 3. Provider Networking (Native + WASM)
```rust
impl EvmProvider {
pub async fn send_raw_transaction<S: Signer>(&self, tx: &Transaction, signer: &S) -> Result<TxHash, EvmError> {
let raw_tx = tx.sign(signer).await?;
let body = format!("{{\"raw\":\"{}\"}}", hex::encode(&raw_tx));
match self {
EvmProvider::Http { url, .. } => {
http_post(url, &body).await
}
}
}
}
// Cross-platform HTTP POST
pub async fn http_post(url: &str, body: &str) -> Result<TxHash, EvmError> {
#[cfg(not(target_arch = "wasm32"))]
{
let resp = reqwest::Client::new().post(url).body(body.to_owned()).send().await?;
// parse response...
Ok(parse_tx_hash(resp.text().await?))
}
#[cfg(target_arch = "wasm32")]
{
let resp = gloo_net::http::Request::post(url).body(body).send().await?;
// parse response...
Ok(parse_tx_hash(resp.text().await?))
}
}
```
### 4. Rhai Scripting Integration
- Expose `add_network`, `switch_network`, and `send_tx` functions to the Rhai engine via the shared bindings pattern.
- Example:
```rust
pub fn register_rhai_api(engine: &mut Engine) {
engine.register_type::<EvmClient<MySigner>>();
engine.register_fn("add_network", EvmClient::add_provider);
engine.register_fn("switch_network", EvmClient::set_current);
engine.register_fn("send_tx", EvmClient::send_transaction);
}
```
### 5. Consistency and Compliance
- **Async, modular, and testable:** All APIs are async and trait-based, just like kvstore/vault.
- **No direct dependencies:** EvmClient is generic over signing backend, like other crates.
- **Cross-platform:** Uses conditional compilation for networking, ensuring WASM and native support.
- **Clear separation:** Network and signing logic are independent, allowing easy extension and testing.
This design fits seamlessly with your projects architecture and modularity goals.
### 5. Web App Integration
- Enable trusted web apps to send Rhai scripts to the extension, using one or both of:
#### Option A: Direct (Client-side)
- Web apps use `window.postMessage()` or DOM events
- Extension listens via content script
- Validates origin before running the script
#### Option B: Server-based (WebSocket)
- Both extension and web app connect to a backend WebSocket server
- Web app sends script to server
- Server routes it to the right connected extension client
- Extension executes the script and returns the result
### 6. Security Considerations
- All script execution is sandboxed via Rhai + Wasm
- Only allow input from:
- Extension popup
- Approved websites or servers
- Validate origins and inputs strictly
- Do not expose internal APIs beyond `run_rhai(script)`
---
## High-Level Component Diagram
```
+-------------------+ +-------------------+
| CLI Tool | | Browser Extension|
| (cli/) | | (browser_ext/) |
+---------+---------+ +---------+---------+
| |
| +----------------+
| |
+---------v---------+
| WASM Module | <--- Shared Rust Core (vault, evm_client)
| (wasm/) |
+---------+---------+
|
+---------v---------+
| Rhai Engine |
+-------------------+
```
---
## Implementation Phases
### Phase 1: Core Library Integration
- Ensure all business logic (vault & evm_client) is accessible from both native and WASM targets.
- Expose required functions to Rhai engine.
### Phase 2: CLI Tool
- Implement CLI that loads and runs Rhai scripts using the shared core.
- Add support for stdin and file input.
### Phase 3: WASM Module
- Build WASM module exposing `run_rhai`.
- Integrate with browser JS via `wasm_bindgen`.
### Phase 4: Browser Extension
- UI for script input and result display.
- Integrate WASM module and SessionManager.
- Secure script input (popup and trusted sites only).
### Phase 5: Web App Integration
- Implement postMessage and/or WebSocket protocol for trusted web apps to send scripts.
- Validate origins and handle results.
---
## Open Questions / TODOs
- What subset of the vault/evm_client API should be exposed to Rhai?
- What are the best practices for sandboxing Rhai in WASM?
- How will user authentication/session be handled between extension and web app?
- How will error reporting and logging work across boundaries?
---
## References
- [Rhai scripting engine](https://rhai.rs/)
- [wasm-bindgen](https://rustwasm.github.io/wasm-bindgen/)
- [WebExtension APIs](https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions)
- [Rust + WASM Book](https://rustwasm.github.io/book/)
---
*Last updated: 2025-05-15*