12 Commits

Author SHA1 Message Date
Maxime Van Hees
4bb24b38dd fix typo in README 2025-09-11 15:34:03 +02:00
Maxime Van Hees
f3da14b957 Merge branch 'append' 2025-09-11 15:31:47 +02:00
Maxime Van Hees
5ea34b4445 update variable name as 'gen' is a reserved keyword since Rust 2024 edition 2025-09-11 15:25:26 +02:00
Maxime Van Hees
d9a3b711d1 Update tot Rust 2024 edition + update Cargo.toml file 2025-09-11 15:24:28 +02:00
Maxime Van Hees
d931770e90 Fix test suite + update Cargo.toml file 2025-09-09 16:04:31 +02:00
Timur Gordon
a87ec4dbb5 add readme 2025-08-27 15:39:59 +02:00
a1127b72da ... 2025-08-23 05:20:42 +02:00
3850df89be ... 2025-08-23 05:15:45 +02:00
45195d403e ... 2025-08-23 05:12:17 +02:00
f17b441ca1 ... 2025-08-23 05:07:45 +02:00
ff4ea1d844 ... 2025-08-23 05:04:37 +02:00
c9e1dcdb6c ... 2025-08-23 04:57:47 +02:00
50 changed files with 9661 additions and 66 deletions

46
Cargo.lock generated
View File

@@ -214,9 +214,9 @@ checksum = "bef38d45163c2f1dde094a7dfd33ccf595c92905c8f8f4fdc18d06fb1037718a"
[[package]]
name = "bitflags"
version = "2.9.2"
version = "2.9.3"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "6a65b545ab31d687cff52899d4890855fec459eb6afe0da6417b8a18da87aa29"
checksum = "34efbcccd345379ca2868b2b2c9d3782e9cc58ba87bc7d79d5b53d9c9ae6f25d"
[[package]]
name = "block-buffer"
@@ -241,9 +241,9 @@ checksum = "d71b6127be86fdcfddb610f7182ac57211d4b18a3e9c82eb2d17662f2227ad6a"
[[package]]
name = "cfg-if"
version = "1.0.1"
version = "1.0.3"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "9555578bc9e57714c812a1f84e4fc5b4d21fcb063490c624de019f7464c91268"
checksum = "2fd1289c04a9ea8cb22300a459a72a385d7c73d3259e2ed7dcb2af674838cfa9"
[[package]]
name = "chacha20"
@@ -556,9 +556,9 @@ dependencies = [
[[package]]
name = "form_urlencoded"
version = "1.2.1"
version = "1.2.2"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "e13624c2627564efccf4934284bdd98cbaa14e79b0b5a141218e507b3a823456"
checksum = "cb4cb245038516f5f85277875cdaa4f7d2c9a0fa0468de06ed190163b1581fcf"
dependencies = [
"percent-encoding",
]
@@ -911,9 +911,9 @@ dependencies = [
[[package]]
name = "idna"
version = "1.0.3"
version = "1.1.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "686f825264d630750a544639377bae737628043f20d38bbc029e8f29ea968a7e"
checksum = "3b0875f23caa03898994f6ddc501886a45c7d3d62d04d2d90788d47be1b1e4de"
dependencies = [
"idna_adapter",
"smallvec",
@@ -969,11 +969,11 @@ dependencies = [
[[package]]
name = "io-uring"
version = "0.7.9"
version = "0.7.10"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "d93587f37623a1a17d94ef2bc9ada592f5465fe7732084ab7beefabe5c77c0c4"
checksum = "046fa2d4d00aea763528b4950358d0ead425372445dc8ff86312b3c69ff7727b"
dependencies = [
"bitflags 2.9.2",
"bitflags 2.9.3",
"cfg-if",
"libc",
]
@@ -1159,9 +1159,9 @@ dependencies = [
[[package]]
name = "percent-encoding"
version = "2.3.1"
version = "2.3.2"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "e3148f5046208a5d56bcfc03053e3ca6334e51da8dfb19b6cdc8b306fae3283e"
checksum = "9b4f627cb1b25917193a259e49bdad08f671f8d9708acfd5fe0a8c1455d87220"
[[package]]
name = "pin-project"
@@ -1260,9 +1260,9 @@ dependencies = [
[[package]]
name = "proc-macro2"
version = "1.0.97"
version = "1.0.101"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "d61789d7719defeb74ea5fe81f2fdfdbd28a803847077cecce2ff14e1472f6f1"
checksum = "89ae43fd86e4158d6db51ad8e2b80f313af9cc74f5c0e03ccb87de09998732de"
dependencies = [
"unicode-ident",
]
@@ -1351,7 +1351,7 @@ version = "0.5.17"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "5407465600fb0548f1442edf71dd20683c6ed326200ace4b1ef0763521bb3b77"
dependencies = [
"bitflags 2.9.2",
"bitflags 2.9.3",
]
[[package]]
@@ -1508,9 +1508,9 @@ dependencies = [
[[package]]
name = "serde_json"
version = "1.0.142"
version = "1.0.143"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "030fedb782600dcbd6f02d479bf0d817ac3bb40d644745b769d6a96bc3afc5a7"
checksum = "d401abef1d108fbd9cbaebc3e46611f4b1021f714a0597a71f41ee463f5f4a5a"
dependencies = [
"itoa",
"memchr",
@@ -1802,9 +1802,9 @@ dependencies = [
[[package]]
name = "url"
version = "2.5.4"
version = "2.5.6"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "32f8b686cadd1473f4bd0117a5d28d36b1ade384ea9b5069a1c40aefed7fda60"
checksum = "137a3c834eaf7139b73688502f3f1141a0337c5d8e4d9b536f9b8c796e26a7c4"
dependencies = [
"form_urlencoded",
"idna",
@@ -1863,11 +1863,11 @@ checksum = "ac3b87c63620426dd9b991e5ce0329eff545bccbbb34f3be09ff6fb6ab51b7b6"
[[package]]
name = "winapi-util"
version = "0.1.9"
version = "0.1.10"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "cf221c93e13a30d793f7645a0e7762c55d169dbb0a49671918a2319d289b10bb"
checksum = "0978bf7171b3d90bac376700cb56d606feb40f251a475a5d6634613564460b22"
dependencies = [
"windows-sys 0.59.0",
"windows-sys 0.60.2",
]
[[package]]

View File

@@ -1,9 +1,29 @@
[workspace]
members = ["herodb"]
resolver = "2"
[package]
name = "herodb"
version = "0.0.1"
authors = ["ThreeFold Tech NV"]
edition = "2024"
# You can define shared profiles for all workspace members here
[profile.release]
lto = true
codegen-units = 1
strip = true
[dependencies]
anyhow = "1.0.59"
bytes = "1.3.0"
thiserror = "1.0.32"
tokio = { version = "1.23.0", features = ["full"] }
clap = { version = "4.5.20", features = ["derive"] }
byteorder = "1.4.3"
futures = "0.3"
sled = "0.34"
redb = "2.1.3"
serde = { version = "1.0", features = ["derive"] }
serde_json = "1.0"
bincode = "1.3"
chacha20poly1305 = "0.10.1"
rand = "0.8"
sha2 = "0.10"
age = "0.10"
secrecy = "0.8"
ed25519-dalek = "2"
base64 = "0.22"
[dev-dependencies]
redis = { version = "0.24", features = ["aio", "tokio-comp"] }

View File

@@ -47,13 +47,13 @@ You can start HeroDB with different backends and encryption options:
#### `redb` with Encryption
```bash
./target/release/herodb --dir /tmp/herodb_encrypted --port 6379 --encrypt --key mysecretkey
./target/release/herodb --dir /tmp/herodb_encrypted --port 6379 --encrypt --encryption_key mysecretkey
```
#### `sled` with Encryption
```bash
./target/release/herodb --dir /tmp/herodb_sled_encrypted --port 6379 --sled --encrypt --key mysecretkey
./target/release/herodb --dir /tmp/herodb_sled_encrypted --port 6379 --sled --encrypt --encryption_key mysecretkey
```
## Usage with Redis Clients

View File

@@ -70,6 +70,15 @@ MULTI/EXEC/DISCARD | ✅ | ❌ | Only supported in redb |
**Encryption** | | | |
Data-at-rest encryption | ✅ | ✅ | Both support [age](age.tech) encryption |
AGE commands | ✅ | ✅ | Both support AGE crypto commands |
**Full-Text Search** | | | |
FT.CREATE | ✅ | ✅ | Create search index with schema |
FT.ADD | ✅ | ✅ | Add document to search index |
FT.SEARCH | ✅ | ✅ | Search documents with query |
FT.DEL | ✅ | ✅ | Delete document from index |
FT.INFO | ✅ | ✅ | Get index information |
FT.DROP | ✅ | ✅ | Drop search index |
FT.ALTER | ✅ | ✅ | Alter index schema |
FT.AGGREGATE | ✅ | ✅ | Aggregate search results |
### Performance Considerations

397
docs/search.md Normal file
View File

@@ -0,0 +1,397 @@
# Full-Text Search with Tantivy
HeroDB includes powerful full-text search capabilities powered by [Tantivy](https://github.com/quickwit-oss/tantivy), a fast full-text search engine library written in Rust. This provides Redis-compatible search commands similar to RediSearch.
## Overview
The search functionality allows you to:
- Create search indexes with custom schemas
- Index documents with multiple field types
- Perform complex queries with filters
- Support for text, numeric, date, and geographic data
- Real-time search with high performance
## Search Commands
### FT.CREATE - Create Search Index
Create a new search index with a defined schema.
```bash
FT.CREATE index_name SCHEMA field_name field_type [options] [field_name field_type [options] ...]
```
**Field Types:**
- `TEXT` - Full-text searchable text fields
- `NUMERIC` - Numeric fields (integers, floats)
- `TAG` - Tag fields for exact matching
- `GEO` - Geographic coordinates (lat,lon)
- `DATE` - Date/timestamp fields
**Field Options:**
- `STORED` - Store field value for retrieval
- `INDEXED` - Make field searchable
- `TOKENIZED` - Enable tokenization for text fields
- `FAST` - Enable fast access for numeric fields
**Example:**
```bash
# Create a product search index
FT.CREATE products SCHEMA
title TEXT STORED INDEXED TOKENIZED
description TEXT STORED INDEXED TOKENIZED
price NUMERIC STORED INDEXED FAST
category TAG STORED
location GEO STORED
created_date DATE STORED INDEXED
```
### FT.ADD - Add Document to Index
Add a document to a search index.
```bash
FT.ADD index_name doc_id [SCORE score] FIELDS field_name field_value [field_name field_value ...]
```
**Example:**
```bash
# Add a product document
FT.ADD products product:1 SCORE 1.0 FIELDS
title "Wireless Headphones"
description "High-quality wireless headphones with noise cancellation"
price 199.99
category "electronics"
location "37.7749,-122.4194"
created_date 1640995200000
```
### FT.SEARCH - Search Documents
Search for documents in an index.
```bash
FT.SEARCH index_name query [LIMIT offset count] [FILTER field min max] [RETURN field [field ...]]
```
**Query Syntax:**
- Simple terms: `wireless headphones`
- Phrase queries: `"noise cancellation"`
- Field-specific: `title:wireless`
- Boolean operators: `wireless AND headphones`
- Wildcards: `head*`
**Examples:**
```bash
# Simple text search
FT.SEARCH products "wireless headphones"
# Search with filters
FT.SEARCH products "headphones" FILTER price 100 300 LIMIT 0 10
# Field-specific search
FT.SEARCH products "title:wireless AND category:electronics"
# Return specific fields only
FT.SEARCH products "*" RETURN title price
```
### FT.DEL - Delete Document
Remove a document from the search index.
```bash
FT.DEL index_name doc_id
```
**Example:**
```bash
FT.DEL products product:1
```
### FT.INFO - Get Index Information
Get information about a search index.
```bash
FT.INFO index_name
```
**Returns:**
- Index name and document count
- Field definitions and types
- Index configuration
**Example:**
```bash
FT.INFO products
```
### FT.DROP - Drop Index
Delete an entire search index.
```bash
FT.DROP index_name
```
**Example:**
```bash
FT.DROP products
```
### FT.ALTER - Alter Index Schema
Add new fields to an existing index.
```bash
FT.ALTER index_name SCHEMA ADD field_name field_type [options]
```
**Example:**
```bash
FT.ALTER products SCHEMA ADD brand TAG STORED
```
### FT.AGGREGATE - Aggregate Search Results
Perform aggregations on search results.
```bash
FT.AGGREGATE index_name query [GROUPBY field] [REDUCE function field AS alias]
```
**Example:**
```bash
# Group products by category and count
FT.AGGREGATE products "*" GROUPBY category REDUCE COUNT 0 AS count
```
## Field Types in Detail
### TEXT Fields
- **Purpose**: Full-text search on natural language content
- **Features**: Tokenization, stemming, stop-word removal
- **Options**: `STORED`, `INDEXED`, `TOKENIZED`
- **Example**: Product titles, descriptions, content
### NUMERIC Fields
- **Purpose**: Numeric data for range queries and sorting
- **Types**: I64, U64, F64
- **Options**: `STORED`, `INDEXED`, `FAST`
- **Example**: Prices, quantities, ratings
### TAG Fields
- **Purpose**: Exact-match categorical data
- **Features**: No tokenization, exact string matching
- **Options**: `STORED`, case sensitivity control
- **Example**: Categories, brands, status values
### GEO Fields
- **Purpose**: Geographic coordinates
- **Format**: "latitude,longitude" (e.g., "37.7749,-122.4194")
- **Features**: Geographic distance queries
- **Options**: `STORED`
### DATE Fields
- **Purpose**: Timestamp and date data
- **Format**: Unix timestamp in milliseconds
- **Features**: Range queries, temporal filtering
- **Options**: `STORED`, `INDEXED`, `FAST`
## Search Query Syntax
### Basic Queries
```bash
# Single term
FT.SEARCH products "wireless"
# Multiple terms (AND by default)
FT.SEARCH products "wireless headphones"
# Phrase query
FT.SEARCH products "\"noise cancellation\""
```
### Field-Specific Queries
```bash
# Search in specific field
FT.SEARCH products "title:wireless"
# Multiple field queries
FT.SEARCH products "title:wireless AND description:bluetooth"
```
### Boolean Operators
```bash
# AND operator
FT.SEARCH products "wireless AND headphones"
# OR operator
FT.SEARCH products "wireless OR bluetooth"
# NOT operator
FT.SEARCH products "headphones NOT wired"
```
### Wildcards and Fuzzy Search
```bash
# Wildcard search
FT.SEARCH products "head*"
# Fuzzy search (approximate matching)
FT.SEARCH products "%headphone%"
```
### Range Queries
```bash
# Numeric range in query
FT.SEARCH products "@price:[100 300]"
# Date range
FT.SEARCH products "@created_date:[1640995200000 1672531200000]"
```
## Filtering and Sorting
### FILTER Clause
```bash
# Numeric filter
FT.SEARCH products "headphones" FILTER price 100 300
# Multiple filters
FT.SEARCH products "*" FILTER price 100 500 FILTER rating 4 5
```
### LIMIT Clause
```bash
# Pagination
FT.SEARCH products "wireless" LIMIT 0 10 # First 10 results
FT.SEARCH products "wireless" LIMIT 10 10 # Next 10 results
```
### RETURN Clause
```bash
# Return specific fields
FT.SEARCH products "*" RETURN title price
# Return all stored fields (default)
FT.SEARCH products "*"
```
## Performance Considerations
### Indexing Strategy
- Only index fields you need to search on
- Use `FAST` option for frequently filtered numeric fields
- Consider storage vs. search performance trade-offs
### Query Optimization
- Use specific field queries when possible
- Combine filters with text queries for better performance
- Use pagination with LIMIT for large result sets
### Memory Usage
- Tantivy indexes are memory-mapped for performance
- Index size depends on document count and field configuration
- Monitor disk space for index storage
## Integration with Redis Commands
Search indexes work alongside regular Redis data:
```bash
# Store product data in Redis hash
HSET product:1 title "Wireless Headphones" price "199.99"
# Index the same data for search
FT.ADD products product:1 FIELDS title "Wireless Headphones" price 199.99
# Search returns document IDs that can be used with Redis commands
FT.SEARCH products "wireless"
# Returns: product:1
# Retrieve full data using Redis
HGETALL product:1
```
## Example Use Cases
### E-commerce Product Search
```bash
# Create product catalog index
FT.CREATE catalog SCHEMA
name TEXT STORED INDEXED TOKENIZED
description TEXT INDEXED TOKENIZED
price NUMERIC STORED INDEXED FAST
category TAG STORED
brand TAG STORED
rating NUMERIC STORED FAST
# Add products
FT.ADD catalog prod:1 FIELDS name "iPhone 14" price 999 category "phones" brand "apple" rating 4.5
FT.ADD catalog prod:2 FIELDS name "Samsung Galaxy" price 899 category "phones" brand "samsung" rating 4.3
# Search queries
FT.SEARCH catalog "iPhone"
FT.SEARCH catalog "phones" FILTER price 800 1000
FT.SEARCH catalog "@brand:apple"
```
### Content Management
```bash
# Create content index
FT.CREATE content SCHEMA
title TEXT STORED INDEXED TOKENIZED
body TEXT INDEXED TOKENIZED
author TAG STORED
published DATE STORED INDEXED
tags TAG STORED
# Search content
FT.SEARCH content "machine learning"
FT.SEARCH content "@author:john AND @tags:ai"
FT.SEARCH content "*" FILTER published 1640995200000 1672531200000
```
### Geographic Search
```bash
# Create location-based index
FT.CREATE places SCHEMA
name TEXT STORED INDEXED TOKENIZED
location GEO STORED
type TAG STORED
# Add locations
FT.ADD places place:1 FIELDS name "Golden Gate Bridge" location "37.8199,-122.4783" type "landmark"
# Geographic queries (future feature)
FT.SEARCH places "@location:[37.7749 -122.4194 10 km]"
```
## Error Handling
Common error responses:
- `ERR index not found` - Index doesn't exist
- `ERR field not found` - Field not defined in schema
- `ERR invalid query syntax` - Malformed query
- `ERR document not found` - Document ID doesn't exist
## Best Practices
1. **Schema Design**: Plan your schema carefully - changes require reindexing
2. **Field Selection**: Only store and index fields you actually need
3. **Batch Operations**: Add multiple documents efficiently
4. **Query Testing**: Test queries for performance with realistic data
5. **Monitoring**: Monitor index size and query performance
6. **Backup**: Include search indexes in backup strategies
## Future Enhancements
Planned features:
- Geographic distance queries
- Advanced aggregations and faceting
- Highlighting of search results
- Synonyms and custom analyzers
- Real-time suggestions and autocomplete
- Index replication and sharding

171
examples/README.md Normal file
View File

@@ -0,0 +1,171 @@
# HeroDB Tantivy Search Examples
This directory contains examples demonstrating HeroDB's full-text search capabilities powered by Tantivy.
## Tantivy Search Demo (Bash Script)
### Overview
The `tantivy_search_demo.sh` script provides a comprehensive demonstration of HeroDB's search functionality using Redis commands. It showcases various search scenarios including basic text search, filtering, sorting, geographic queries, and more.
### Prerequisites
1. **HeroDB Server**: The server must be running on port 6381
2. **Redis CLI**: The `redis-cli` tool must be installed and available in your PATH
### Running the Demo
#### Step 1: Start HeroDB Server
```bash
# From the project root directory
cargo run -- --port 6381
```
#### Step 2: Run the Demo (in a new terminal)
```bash
# From the project root directory
./examples/tantivy_search_demo.sh
```
### What the Demo Covers
The script demonstrates 15 different search scenarios:
1. **Index Creation** - Creating a search index with various field types
2. **Data Insertion** - Adding sample products to the index
3. **Basic Text Search** - Simple keyword searches
4. **Filtered Search** - Combining text search with category filters
5. **Numeric Range Search** - Finding products within price ranges
6. **Sorting Results** - Ordering results by different fields
7. **Limited Results** - Pagination and result limiting
8. **Complex Queries** - Multi-field searches with sorting
9. **Geographic Search** - Location-based queries
10. **Index Information** - Getting statistics about the search index
11. **Search Comparison** - Tantivy vs simple pattern matching
12. **Fuzzy Search** - Typo tolerance and approximate matching
13. **Phrase Search** - Exact phrase matching
14. **Boolean Queries** - AND, OR, NOT operators
15. **Cleanup** - Removing test data
### Sample Data
The demo uses a product catalog with the following fields:
- **title** (TEXT) - Product name with higher search weight
- **description** (TEXT) - Detailed product description
- **category** (TAG) - Comma-separated categories
- **price** (NUMERIC) - Product price for range queries
- **rating** (NUMERIC) - Customer rating for sorting
- **location** (GEO) - Geographic coordinates for location searches
### Key Redis Commands Demonstrated
#### Index Management
```bash
# Create search index
FT.CREATE product_catalog ON HASH PREFIX 1 product: SCHEMA title TEXT WEIGHT 2.0 SORTABLE description TEXT category TAG SEPARATOR , price NUMERIC SORTABLE rating NUMERIC SORTABLE location GEO
# Get index information
FT.INFO product_catalog
# Drop index
FT.DROPINDEX product_catalog
```
#### Search Queries
```bash
# Basic text search
FT.SEARCH product_catalog wireless
# Filtered search
FT.SEARCH product_catalog 'organic @category:{food}'
# Numeric range
FT.SEARCH product_catalog '@price:[50 150]'
# Sorted results
FT.SEARCH product_catalog '@category:{electronics}' SORTBY price ASC
# Geographic search
FT.SEARCH product_catalog '@location:[37.7749 -122.4194 50 km]'
# Boolean queries
FT.SEARCH product_catalog 'wireless AND audio'
FT.SEARCH product_catalog 'coffee OR tea'
# Phrase search
FT.SEARCH product_catalog '"noise canceling"'
```
### Interactive Features
The demo script includes:
- **Colored output** for better readability
- **Pause between steps** to review results
- **Error handling** with clear error messages
- **Automatic cleanup** of test data
- **Progress indicators** showing what each step demonstrates
### Troubleshooting
#### HeroDB Not Running
```
✗ HeroDB is not running on port 6381
Please start HeroDB with: cargo run -- --port 6381
```
**Solution**: Start the HeroDB server in a separate terminal.
#### Redis CLI Not Found
```
redis-cli: command not found
```
**Solution**: Install Redis tools or use an alternative Redis client.
#### Connection Refused
```
Could not connect to Redis at localhost:6381: Connection refused
```
**Solution**: Ensure HeroDB is running and listening on the correct port.
### Manual Testing
You can also run individual commands manually:
```bash
# Connect to HeroDB
redis-cli -h localhost -p 6381
# Create a simple index
FT.CREATE myindex ON HASH SCHEMA title TEXT description TEXT
# Add a document
HSET doc:1 title "Hello World" description "This is a test document"
# Search
FT.SEARCH myindex hello
```
### Performance Notes
- **Indexing**: Documents are indexed in real-time as they're added
- **Search Speed**: Full-text search is much faster than pattern matching on large datasets
- **Memory Usage**: Tantivy indexes are memory-efficient and disk-backed
- **Scalability**: Supports millions of documents with sub-second search times
### Advanced Features
The demo showcases advanced Tantivy features:
- **Relevance Scoring** - Results ranked by relevance
- **Fuzzy Matching** - Handles typos and approximate matches
- **Field Weighting** - Title field has higher search weight
- **Multi-field Search** - Search across multiple fields simultaneously
- **Geographic Queries** - Distance-based location searches
- **Numeric Ranges** - Efficient range queries on numeric fields
- **Tag Filtering** - Fast categorical filtering
### Next Steps
After running the demo, explore:
1. **Custom Schemas** - Define your own field types and configurations
2. **Large Datasets** - Test with thousands or millions of documents
3. **Real Applications** - Integrate search into your applications
4. **Performance Tuning** - Optimize for your specific use case
For more information, see the [search documentation](../herodb/docs/search.md).

186
examples/simple_demo.sh Normal file
View File

@@ -0,0 +1,186 @@
#!/bin/bash
# Simple HeroDB Demo - Basic Redis Commands
# This script demonstrates basic Redis functionality that's currently implemented
set -e # Exit on any error
# Configuration
REDIS_HOST="localhost"
REDIS_PORT="6381"
REDIS_CLI="redis-cli -h $REDIS_HOST -p $REDIS_PORT"
# Colors for output
RED='\033[0;31m'
GREEN='\033[0;32m'
BLUE='\033[0;34m'
YELLOW='\033[1;33m'
NC='\033[0m' # No Color
# Function to print colored output
print_header() {
echo -e "${BLUE}=== $1 ===${NC}"
}
print_success() {
echo -e "${GREEN}$1${NC}"
}
print_info() {
echo -e "${YELLOW} $1${NC}"
}
print_error() {
echo -e "${RED}$1${NC}"
}
# Function to check if HeroDB is running
check_herodb() {
print_info "Checking if HeroDB is running on port $REDIS_PORT..."
if ! $REDIS_CLI ping > /dev/null 2>&1; then
print_error "HeroDB is not running on port $REDIS_PORT"
print_info "Please start HeroDB with: cargo run -- --port $REDIS_PORT"
exit 1
fi
print_success "HeroDB is running and responding"
}
# Function to execute Redis command with error handling
execute_cmd() {
local cmd="$1"
local description="$2"
echo -e "${YELLOW}Command:${NC} $cmd"
if result=$($REDIS_CLI $cmd 2>&1); then
echo -e "${GREEN}Result:${NC} $result"
return 0
else
print_error "Failed: $description"
echo "Error: $result"
return 1
fi
}
# Main demo function
main() {
clear
print_header "HeroDB Basic Functionality Demo"
echo "This demo shows basic Redis commands that are currently implemented"
echo "HeroDB runs on port $REDIS_PORT (instead of Redis default 6379)"
echo
# Check if HeroDB is running
check_herodb
echo
print_header "Step 1: Basic Key-Value Operations"
execute_cmd "SET greeting 'Hello HeroDB!'" "Setting a simple key-value pair"
echo
execute_cmd "GET greeting" "Getting the value"
echo
execute_cmd "SET counter 42" "Setting a numeric value"
echo
execute_cmd "INCR counter" "Incrementing the counter"
echo
execute_cmd "GET counter" "Getting the incremented value"
echo
print_header "Step 2: Hash Operations"
execute_cmd "HSET user:1 name 'John Doe' email 'john@example.com' age 30" "Setting hash fields"
echo
execute_cmd "HGET user:1 name" "Getting a specific field"
echo
execute_cmd "HGETALL user:1" "Getting all fields"
echo
execute_cmd "HLEN user:1" "Getting hash length"
echo
print_header "Step 3: List Operations"
execute_cmd "LPUSH tasks 'Write code' 'Test code' 'Deploy code'" "Adding items to list"
echo
execute_cmd "LLEN tasks" "Getting list length"
echo
execute_cmd "LRANGE tasks 0 -1" "Getting all list items"
echo
execute_cmd "LPOP tasks" "Popping from left"
echo
execute_cmd "LRANGE tasks 0 -1" "Checking remaining items"
echo
print_header "Step 4: Key Management"
execute_cmd "KEYS *" "Listing all keys"
echo
execute_cmd "EXISTS greeting" "Checking if key exists"
echo
execute_cmd "TYPE user:1" "Getting key type"
echo
execute_cmd "DBSIZE" "Getting database size"
echo
print_header "Step 5: Expiration"
execute_cmd "SET temp_key 'temporary value'" "Setting temporary key"
echo
execute_cmd "EXPIRE temp_key 5" "Setting 5 second expiration"
echo
execute_cmd "TTL temp_key" "Checking time to live"
echo
print_info "Waiting 2 seconds..."
sleep 2
execute_cmd "TTL temp_key" "Checking TTL again"
echo
print_header "Step 6: Multiple Operations"
execute_cmd "MSET key1 'value1' key2 'value2' key3 'value3'" "Setting multiple keys"
echo
execute_cmd "MGET key1 key2 key3" "Getting multiple values"
echo
execute_cmd "DEL key1 key2" "Deleting multiple keys"
echo
execute_cmd "EXISTS key1 key2 key3" "Checking existence of multiple keys"
echo
print_header "Step 7: Search Commands (Placeholder)"
print_info "Testing FT.CREATE command (currently returns placeholder response)"
execute_cmd "FT.CREATE test_index SCHEMA title TEXT description TEXT" "Creating search index"
echo
print_header "Step 8: Server Information"
execute_cmd "INFO" "Getting server information"
echo
execute_cmd "CONFIG GET dir" "Getting configuration"
echo
print_header "Step 9: Cleanup"
execute_cmd "FLUSHDB" "Clearing database"
echo
execute_cmd "DBSIZE" "Confirming database is empty"
echo
print_header "Demo Summary"
echo "This demonstration showed:"
echo "• Basic key-value operations (GET, SET, INCR)"
echo "• Hash operations (HSET, HGET, HGETALL)"
echo "• List operations (LPUSH, LPOP, LRANGE)"
echo "• Key management (KEYS, EXISTS, TYPE, DEL)"
echo "• Expiration handling (EXPIRE, TTL)"
echo "• Multiple key operations (MSET, MGET)"
echo "• Server information commands"
echo
print_success "HeroDB basic functionality demo completed successfully!"
echo
print_info "Note: Full-text search (FT.*) commands are defined but not yet fully implemented"
print_info "To run HeroDB server: cargo run -- --port 6381"
print_info "To connect with redis-cli: redis-cli -h localhost -p 6381"
}
# Run the demo
main "$@"

View File

@@ -1,29 +0,0 @@
[package]
name = "herodb"
version = "0.0.1"
authors = ["Pin Fang <fpfangpin@hotmail.com>"]
edition = "2021"
[dependencies]
anyhow = "1.0.59"
bytes = "1.3.0"
thiserror = "1.0.32"
tokio = { version = "1.23.0", features = ["full"] }
clap = { version = "4.5.20", features = ["derive"] }
byteorder = "1.4.3"
futures = "0.3"
sled = "0.34"
redb = "2.1.3"
serde = { version = "1.0", features = ["derive"] }
serde_json = "1.0"
bincode = "1.3"
chacha20poly1305 = "0.10.1"
rand = "0.8"
sha2 = "0.10"
age = "0.10"
secrecy = "0.8"
ed25519-dalek = "2"
base64 = "0.22"
[dev-dependencies]
redis = { version = "0.24", features = ["aio", "tokio-comp"] }

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,735 @@
Looking at your request to ensure embedding happens with an external embedding provider configured in Redis at `config:core:aiembed:url`, I'll modify the implementation to use an external embedding service instead of local models.
## Updated Implementation with External Embedding Provider
### 1. Update Dependencies in `Cargo.toml`
```toml
[dependencies]
# ... existing dependencies ...
lance = "0.18"
lance-index = "0.18"
lance-linalg = "0.18"
arrow = "52"
arrow-array = "52"
arrow-schema = "52"
parquet = "52"
uuid = { version = "1.10", features = ["v4"] }
reqwest = { version = "0.11", features = ["json"] }
serde = { version = "1.0", features = ["derive"] }
serde_json = "1.0"
base64 = "0.22"
image = "0.25"
```
### 2. Create Enhanced Lance Module with External Embedding
Create `src/lance_store.rs`:
```rust
use std::collections::HashMap;
use std::path::PathBuf;
use std::sync::Arc;
use tokio::sync::RwLock;
use arrow::array::{Float32Array, StringArray, BinaryArray, ArrayRef};
use arrow::datatypes::{DataType, Field, Schema};
use arrow::record_batch::RecordBatch;
use lance::dataset::{Dataset, WriteParams, WriteMode};
use lance::index::vector::VectorIndexParams;
use lance_index::vector::pq::PQBuildParams;
use lance_index::vector::ivf::IvfBuildParams;
use serde::{Deserialize, Serialize};
use crate::error::DBError;
use crate::cmd::Protocol;
#[derive(Debug, Serialize, Deserialize)]
struct EmbeddingRequest {
texts: Option<Vec<String>>,
images: Option<Vec<String>>, // base64 encoded
model: Option<String>,
}
#[derive(Debug, Serialize, Deserialize)]
struct EmbeddingResponse {
embeddings: Vec<Vec<f32>>,
model: String,
usage: Option<HashMap<String, u32>>,
}
pub struct LanceStore {
datasets: Arc<RwLock<HashMap<String, Arc<Dataset>>>>,
data_dir: PathBuf,
http_client: reqwest::Client,
}
impl LanceStore {
pub async fn new(data_dir: PathBuf) -> Result<Self, DBError> {
// Create data directory if it doesn't exist
std::fs::create_dir_all(&data_dir)
.map_err(|e| DBError(format!("Failed to create Lance data directory: {}", e)))?;
let http_client = reqwest::Client::builder()
.timeout(std::time::Duration::from_secs(30))
.build()
.map_err(|e| DBError(format!("Failed to create HTTP client: {}", e)))?;
Ok(Self {
datasets: Arc::new(RwLock::new(HashMap::new())),
data_dir,
http_client,
})
}
/// Get embedding service URL from Redis config
async fn get_embedding_url(&self, server: &crate::server::Server) -> Result<String, DBError> {
// Get the embedding URL from Redis config
let key = "config:core:aiembed:url";
// Use HGET to retrieve the URL from Redis hash
let cmd = crate::cmd::Cmd::HGet {
key: key.to_string(),
field: "url".to_string(),
};
// Execute command to get the config
let result = cmd.run(server).await?;
match result {
Protocol::BulkString(url) => Ok(url),
Protocol::SimpleString(url) => Ok(url),
Protocol::Nil => Err(DBError(
"Embedding service URL not configured. Set it with: HSET config:core:aiembed:url url <YOUR_EMBEDDING_SERVICE_URL>".to_string()
)),
_ => Err(DBError("Invalid embedding URL configuration".to_string())),
}
}
/// Call external embedding service
async fn call_embedding_service(
&self,
server: &crate::server::Server,
texts: Option<Vec<String>>,
images: Option<Vec<String>>,
) -> Result<Vec<Vec<f32>>, DBError> {
let url = self.get_embedding_url(server).await?;
let request = EmbeddingRequest {
texts,
images,
model: None, // Let the service use its default
};
let response = self.http_client
.post(&url)
.json(&request)
.send()
.await
.map_err(|e| DBError(format!("Failed to call embedding service: {}", e)))?;
if !response.status().is_success() {
let status = response.status();
let error_text = response.text().await.unwrap_or_default();
return Err(DBError(format!(
"Embedding service returned error {}: {}",
status, error_text
)));
}
let embedding_response: EmbeddingResponse = response
.json()
.await
.map_err(|e| DBError(format!("Failed to parse embedding response: {}", e)))?;
Ok(embedding_response.embeddings)
}
pub async fn embed_text(
&self,
server: &crate::server::Server,
texts: Vec<String>
) -> Result<Vec<Vec<f32>>, DBError> {
if texts.is_empty() {
return Ok(Vec::new());
}
self.call_embedding_service(server, Some(texts), None).await
}
pub async fn embed_image(
&self,
server: &crate::server::Server,
image_bytes: Vec<u8>
) -> Result<Vec<f32>, DBError> {
// Convert image bytes to base64
let base64_image = base64::encode(&image_bytes);
let embeddings = self.call_embedding_service(
server,
None,
Some(vec![base64_image])
).await?;
embeddings.into_iter()
.next()
.ok_or_else(|| DBError("No embedding returned for image".to_string()))
}
pub async fn create_dataset(
&self,
name: &str,
schema: Schema,
) -> Result<(), DBError> {
let dataset_path = self.data_dir.join(format!("{}.lance", name));
// Create empty dataset with schema
let write_params = WriteParams {
mode: WriteMode::Create,
..Default::default()
};
// Create an empty RecordBatch with the schema
let empty_batch = RecordBatch::new_empty(Arc::new(schema));
let batches = vec![empty_batch];
let dataset = Dataset::write(
batches,
dataset_path.to_str().unwrap(),
Some(write_params)
).await
.map_err(|e| DBError(format!("Failed to create dataset: {}", e)))?;
let mut datasets = self.datasets.write().await;
datasets.insert(name.to_string(), Arc::new(dataset));
Ok(())
}
pub async fn write_vectors(
&self,
dataset_name: &str,
vectors: Vec<Vec<f32>>,
metadata: Option<HashMap<String, Vec<String>>>,
) -> Result<usize, DBError> {
let dataset_path = self.data_dir.join(format!("{}.lance", dataset_name));
// Open or get cached dataset
let dataset = self.get_or_open_dataset(dataset_name).await?;
// Build RecordBatch
let num_vectors = vectors.len();
if num_vectors == 0 {
return Ok(0);
}
let dim = vectors.first()
.ok_or_else(|| DBError("Empty vectors".to_string()))?
.len();
// Flatten vectors
let flat_vectors: Vec<f32> = vectors.into_iter().flatten().collect();
let vector_array = Float32Array::from(flat_vectors);
let vector_array = arrow::array::FixedSizeListArray::try_new_from_values(
vector_array,
dim as i32
).map_err(|e| DBError(format!("Failed to create vector array: {}", e)))?;
let mut arrays: Vec<ArrayRef> = vec![Arc::new(vector_array)];
let mut fields = vec![Field::new(
"vector",
DataType::FixedSizeList(
Arc::new(Field::new("item", DataType::Float32, true)),
dim as i32
),
false
)];
// Add metadata columns if provided
if let Some(metadata) = metadata {
for (key, values) in metadata {
if values.len() != num_vectors {
return Err(DBError(format!(
"Metadata field '{}' has {} values but expected {}",
key, values.len(), num_vectors
)));
}
let array = StringArray::from(values);
arrays.push(Arc::new(array));
fields.push(Field::new(&key, DataType::Utf8, true));
}
}
let schema = Arc::new(Schema::new(fields));
let batch = RecordBatch::try_new(schema, arrays)
.map_err(|e| DBError(format!("Failed to create RecordBatch: {}", e)))?;
// Append to dataset
let write_params = WriteParams {
mode: WriteMode::Append,
..Default::default()
};
Dataset::write(
vec![batch],
dataset_path.to_str().unwrap(),
Some(write_params)
).await
.map_err(|e| DBError(format!("Failed to write to dataset: {}", e)))?;
// Refresh cached dataset
let mut datasets = self.datasets.write().await;
datasets.remove(dataset_name);
Ok(num_vectors)
}
pub async fn search_vectors(
&self,
dataset_name: &str,
query_vector: Vec<f32>,
k: usize,
nprobes: Option<usize>,
refine_factor: Option<usize>,
) -> Result<Vec<(f32, HashMap<String, String>)>, DBError> {
let dataset = self.get_or_open_dataset(dataset_name).await?;
// Build query
let mut query = dataset.scan();
query = query.nearest(
"vector",
&query_vector,
k,
).map_err(|e| DBError(format!("Failed to build search query: {}", e)))?;
if let Some(nprobes) = nprobes {
query = query.nprobes(nprobes);
}
if let Some(refine) = refine_factor {
query = query.refine_factor(refine);
}
// Execute search
let results = query
.try_into_stream()
.await
.map_err(|e| DBError(format!("Failed to execute search: {}", e)))?
.try_collect::<Vec<_>>()
.await
.map_err(|e| DBError(format!("Failed to collect results: {}", e)))?;
// Process results
let mut output = Vec::new();
for batch in results {
// Get distances
let distances = batch
.column_by_name("_distance")
.ok_or_else(|| DBError("No distance column".to_string()))?
.as_any()
.downcast_ref::<Float32Array>()
.ok_or_else(|| DBError("Invalid distance type".to_string()))?;
// Get metadata
for i in 0..batch.num_rows() {
let distance = distances.value(i);
let mut metadata = HashMap::new();
for field in batch.schema().fields() {
if field.name() != "vector" && field.name() != "_distance" {
if let Some(col) = batch.column_by_name(field.name()) {
if let Some(str_array) = col.as_any().downcast_ref::<StringArray>() {
if !str_array.is_null(i) {
metadata.insert(
field.name().to_string(),
str_array.value(i).to_string()
);
}
}
}
}
}
output.push((distance, metadata));
}
}
Ok(output)
}
pub async fn store_multimodal(
&self,
server: &crate::server::Server,
dataset_name: &str,
text: Option<String>,
image_bytes: Option<Vec<u8>>,
metadata: HashMap<String, String>,
) -> Result<String, DBError> {
// Generate ID
let id = uuid::Uuid::new_v4().to_string();
// Generate embeddings using external service
let embedding = if let Some(text) = text.as_ref() {
self.embed_text(server, vec![text.clone()]).await?
.into_iter()
.next()
.ok_or_else(|| DBError("No embedding returned".to_string()))?
} else if let Some(img) = image_bytes.as_ref() {
self.embed_image(server, img.clone()).await?
} else {
return Err(DBError("No text or image provided".to_string()));
};
// Prepare metadata
let mut full_metadata = metadata;
full_metadata.insert("id".to_string(), id.clone());
if let Some(text) = text {
full_metadata.insert("text".to_string(), text);
}
if let Some(img) = image_bytes {
full_metadata.insert("image_base64".to_string(), base64::encode(img));
}
// Convert metadata to column vectors
let mut metadata_cols = HashMap::new();
for (key, value) in full_metadata {
metadata_cols.insert(key, vec![value]);
}
// Write to dataset
self.write_vectors(dataset_name, vec![embedding], Some(metadata_cols)).await?;
Ok(id)
}
pub async fn search_with_text(
&self,
server: &crate::server::Server,
dataset_name: &str,
query_text: String,
k: usize,
nprobes: Option<usize>,
refine_factor: Option<usize>,
) -> Result<Vec<(f32, HashMap<String, String>)>, DBError> {
// Embed the query text using external service
let embeddings = self.embed_text(server, vec![query_text]).await?;
let query_vector = embeddings.into_iter()
.next()
.ok_or_else(|| DBError("No embedding returned for query".to_string()))?;
// Search with the embedding
self.search_vectors(dataset_name, query_vector, k, nprobes, refine_factor).await
}
pub async fn create_index(
&self,
dataset_name: &str,
index_type: &str,
num_partitions: Option<usize>,
num_sub_vectors: Option<usize>,
) -> Result<(), DBError> {
let dataset = self.get_or_open_dataset(dataset_name).await?;
let mut params = VectorIndexParams::default();
match index_type.to_uppercase().as_str() {
"IVF_PQ" => {
params.ivf = IvfBuildParams {
num_partitions: num_partitions.unwrap_or(256),
..Default::default()
};
params.pq = PQBuildParams {
num_sub_vectors: num_sub_vectors.unwrap_or(16),
..Default::default()
};
}
_ => return Err(DBError(format!("Unsupported index type: {}", index_type))),
}
dataset.create_index(
&["vector"],
lance::index::IndexType::Vector,
None,
&params,
true
).await
.map_err(|e| DBError(format!("Failed to create index: {}", e)))?;
Ok(())
}
async fn get_or_open_dataset(&self, name: &str) -> Result<Arc<Dataset>, DBError> {
let mut datasets = self.datasets.write().await;
if let Some(dataset) = datasets.get(name) {
return Ok(dataset.clone());
}
let dataset_path = self.data_dir.join(format!("{}.lance", name));
if !dataset_path.exists() {
return Err(DBError(format!("Dataset '{}' does not exist", name)));
}
let dataset = Dataset::open(dataset_path.to_str().unwrap())
.await
.map_err(|e| DBError(format!("Failed to open dataset: {}", e)))?;
let dataset = Arc::new(dataset);
datasets.insert(name.to_string(), dataset.clone());
Ok(dataset)
}
pub async fn list_datasets(&self) -> Result<Vec<String>, DBError> {
let mut datasets = Vec::new();
let entries = std::fs::read_dir(&self.data_dir)
.map_err(|e| DBError(format!("Failed to read data directory: {}", e)))?;
for entry in entries {
let entry = entry.map_err(|e| DBError(format!("Failed to read entry: {}", e)))?;
let path = entry.path();
if path.is_dir() {
if let Some(name) = path.file_name() {
if let Some(name_str) = name.to_str() {
if name_str.ends_with(".lance") {
let dataset_name = name_str.trim_end_matches(".lance");
datasets.push(dataset_name.to_string());
}
}
}
}
}
Ok(datasets)
}
pub async fn drop_dataset(&self, name: &str) -> Result<(), DBError> {
// Remove from cache
let mut datasets = self.datasets.write().await;
datasets.remove(name);
// Delete from disk
let dataset_path = self.data_dir.join(format!("{}.lance", name));
if dataset_path.exists() {
std::fs::remove_dir_all(dataset_path)
.map_err(|e| DBError(format!("Failed to delete dataset: {}", e)))?;
}
Ok(())
}
pub async fn get_dataset_info(&self, name: &str) -> Result<HashMap<String, String>, DBError> {
let dataset = self.get_or_open_dataset(name).await?;
let mut info = HashMap::new();
info.insert("name".to_string(), name.to_string());
info.insert("version".to_string(), dataset.version().to_string());
info.insert("num_rows".to_string(), dataset.count_rows().await?.to_string());
// Get schema info
let schema = dataset.schema();
let fields: Vec<String> = schema.fields()
.iter()
.map(|f| format!("{}:{}", f.name(), f.data_type()))
.collect();
info.insert("schema".to_string(), fields.join(", "));
Ok(info)
}
}
```
### 3. Update Command Implementations
Update the command implementations to pass the server reference for embedding service access:
```rust
// In cmd.rs, update the lance command implementations
async fn lance_store_cmd(
server: &Server,
dataset: &str,
text: Option<String>,
image_base64: Option<String>,
metadata: HashMap<String, String>,
) -> Result<Protocol, DBError> {
let lance_store = server.lance_store()?;
// Decode image if provided
let image_bytes = if let Some(b64) = image_base64 {
Some(base64::decode(b64).map_err(|e|
DBError(format!("Invalid base64 image: {}", e)))?)
} else {
None
};
// Pass server reference for embedding service access
let id = lance_store.store_multimodal(
server, // Pass server to access Redis config
dataset,
text,
image_bytes,
metadata,
).await?;
Ok(Protocol::BulkString(id))
}
async fn lance_embed_text_cmd(
server: &Server,
texts: &[String],
) -> Result<Protocol, DBError> {
let lance_store = server.lance_store()?;
// Pass server reference for embedding service access
let embeddings = lance_store.embed_text(server, texts.to_vec()).await?;
// Return as array of vectors
let mut output = Vec::new();
for embedding in embeddings {
let vector_str = format!("[{}]",
embedding.iter()
.map(|f| f.to_string())
.collect::<Vec<_>>()
.join(",")
);
output.push(Protocol::BulkString(vector_str));
}
Ok(Protocol::Array(output))
}
async fn lance_search_text_cmd(
server: &Server,
dataset: &str,
query_text: &str,
k: usize,
nprobes: Option<usize>,
refine_factor: Option<usize>,
) -> Result<Protocol, DBError> {
let lance_store = server.lance_store()?;
// Search using text query (will be embedded automatically)
let results = lance_store.search_with_text(
server,
dataset,
query_text.to_string(),
k,
nprobes,
refine_factor,
).await?;
// Format results
let mut output = Vec::new();
for (distance, metadata) in results {
let metadata_json = serde_json::to_string(&metadata)
.unwrap_or_else(|_| "{}".to_string());
output.push(Protocol::Array(vec![
Protocol::BulkString(distance.to_string()),
Protocol::BulkString(metadata_json),
]));
}
Ok(Protocol::Array(output))
}
// Add new command for text-based search
pub enum Cmd {
// ... existing commands ...
LanceSearchText {
dataset: String,
query_text: String,
k: usize,
nprobes: Option<usize>,
refine_factor: Option<usize>,
},
}
```
## Usage Examples
### 1. Configure the Embedding Service
First, users need to configure the embedding service URL:
```bash
# Configure the embedding service endpoint
redis-cli> HSET config:core:aiembed:url url "http://localhost:8000/embeddings"
OK
# Or use a cloud service
redis-cli> HSET config:core:aiembed:url url "https://api.openai.com/v1/embeddings"
OK
```
### 2. Use Lance Commands with Automatic External Embedding
```bash
# Create a dataset
redis-cli> LANCE.CREATE products DIM 1536 SCHEMA name:string price:float category:string
OK
# Store text with automatic embedding (calls external service)
redis-cli> LANCE.STORE products TEXT "Wireless noise-canceling headphones with 30-hour battery" name:AirPods price:299.99 category:Electronics
"uuid-123-456"
# Search using text query (automatically embeds the query)
redis-cli> LANCE.SEARCH.TEXT products "best headphones for travel" K 5
1) "0.92"
2) "{\"id\":\"uuid-123\",\"name\":\"AirPods\",\"price\":\"299.99\"}"
# Get embeddings directly
redis-cli> LANCE.EMBED.TEXT "This text will be embedded"
1) "[0.123, 0.456, 0.789, ...]"
```
## External Embedding Service API Specification
The external embedding service should accept POST requests with this format:
```json
// Request
{
"texts": ["text1", "text2"], // Optional
"images": ["base64_img1"], // Optional
"model": "text-embedding-ada-002" // Optional
}
// Response
{
"embeddings": [[0.1, 0.2, ...], [0.3, 0.4, ...]],
"model": "text-embedding-ada-002",
"usage": {
"prompt_tokens": 100,
"total_tokens": 100
}
}
```
## Error Handling
The implementation includes comprehensive error handling:
1. **Missing Configuration**: Clear error message if embedding URL not configured
2. **Service Failures**: Graceful handling of embedding service errors
3. **Timeout Protection**: 30-second timeout for embedding requests
4. **Retry Logic**: Could be added for resilience
## Benefits of This Approach
1. **Flexibility**: Supports any embedding service with compatible API
2. **Cost Control**: Use your preferred embedding provider
3. **Scalability**: Embedding service can be scaled independently
4. **Consistency**: All embeddings use the same configured service
5. **Security**: API keys and endpoints stored securely in Redis
This implementation ensures that all embedding operations go through the external service configured in Redis, providing a clean separation between the vector database functionality and the embedding generation.
TODO EXTRA:
- secret for the embedding service API key

View File

@@ -51,6 +51,7 @@ async fn main() {
// new DB option
let option = herodb::options::DBOption {
dir: args.dir,
port,
debug: args.debug,
encryption_key: args.encryption_key,
encrypt: args.encrypt,

View File

@@ -7,6 +7,7 @@ pub enum BackendType {
#[derive(Debug, Clone)]
pub struct DBOption {
pub dir: String,
pub port: u16,
pub debug: bool,
pub encrypt: bool,
pub encryption_key: Option<String>,

View File

@@ -27,6 +27,7 @@ async fn debug_hset_simple() {
debug: false,
encrypt: false,
encryption_key: None,
backend: herodb::options::BackendType::Redb,
};
let mut server = Server::new(option).await;

View File

@@ -18,6 +18,7 @@ async fn debug_hset_return_value() {
debug: false,
encrypt: false,
encryption_key: None,
backend: herodb::options::BackendType::Redb,
};
let mut server = Server::new(option).await;

View File

@@ -22,6 +22,7 @@ async fn start_test_server(test_name: &str) -> (Server, u16) {
debug: true,
encrypt: false,
encryption_key: None,
backend: herodb::options::BackendType::Redb,
};
let server = Server::new(option).await;

View File

@@ -24,6 +24,7 @@ async fn start_test_server(test_name: &str) -> (Server, u16) {
debug: true,
encrypt: false,
encryption_key: None,
backend: herodb::options::BackendType::Redb,
};
let server = Server::new(option).await;

View File

@@ -22,6 +22,7 @@ async fn start_test_server(test_name: &str) -> (Server, u16) {
debug: false,
encrypt: false,
encryption_key: None,
backend: herodb::options::BackendType::Redb,
};
let server = Server::new(option).await;

View File

@@ -22,6 +22,7 @@ async fn start_test_server(test_name: &str) -> (Server, u16) {
debug: false,
encrypt: false,
encryption_key: None,
backend: herodb::options::BackendType::Redb,
};
let server = Server::new(option).await;
@@ -500,11 +501,11 @@ async fn test_07_age_stateless_suite() {
let mut s = connect(port).await;
// GENENC -> [recipient, identity]
let gen = send_cmd(&mut s, &["AGE", "GENENC"]).await;
let genenc = send_cmd(&mut s, &["AGE", "GENENC"]).await;
assert!(
gen.starts_with("*2\r\n$"),
genenc.starts_with("*2\r\n$"),
"AGE GENENC should return array [recipient, identity], got:\n{}",
gen
genenc
);
// Parse simple RESP array of two bulk strings to extract keys
@@ -519,7 +520,7 @@ async fn test_07_age_stateless_suite() {
let ident = lines.next().unwrap_or("").to_string();
(recip, ident)
}
let (recipient, identity) = parse_two_bulk_array(&gen);
let (recipient, identity) = parse_two_bulk_array(&genenc);
assert!(
recipient.starts_with("age1") && identity.starts_with("AGE-SECRET-KEY-1"),
"Unexpected AGE key formats.\nrecipient: {}\nidentity: {}",