831 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
			
		
		
	
	
			831 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
# HeroDB Embedding Models: Complete Tutorial
 | 
						|
 | 
						|
This tutorial demonstrates how to use embedding models with HeroDB for vector search, covering local self-hosted models, OpenAI's API, and deterministic test embedders.
 | 
						|
 | 
						|
## Table of Contents
 | 
						|
- [Prerequisites](#prerequisites)
 | 
						|
- [Scenario 1: Local Embedding Model](#scenario-1-local-embedding-model-testing)
 | 
						|
- [Scenario 2: OpenAI API](#scenario-2-openai-api)
 | 
						|
- [Scenario 3: Deterministic Test Embedder](#scenario-3-deterministic-test-embedder-no-network)
 | 
						|
- [Troubleshooting](#troubleshooting)
 | 
						|
 | 
						|
---
 | 
						|
 | 
						|
## Prerequisites
 | 
						|
 | 
						|
### Start HeroDB Server
 | 
						|
 | 
						|
Build and start HeroDB with RPC enabled:
 | 
						|
 | 
						|
```bash
 | 
						|
cargo build --release
 | 
						|
./target/release/herodb --dir ./data --admin-secret my-admin-secret --enable-rpc --rpc-port 8080
 | 
						|
```
 | 
						|
 | 
						|
This starts:
 | 
						|
- Redis-compatible server on port 6379
 | 
						|
- JSON-RPC server on port 8080
 | 
						|
 | 
						|
### Client Tools
 | 
						|
 | 
						|
For Redis-like commands:
 | 
						|
```bash
 | 
						|
redis-cli -p 6379
 | 
						|
```
 | 
						|
 | 
						|
For JSON-RPC calls, use `curl`:
 | 
						|
```bash
 | 
						|
curl -X POST http://localhost:8080 \
 | 
						|
  -H "Content-Type: application/json" \
 | 
						|
  -d '{"jsonrpc":"2.0","id":1,"method":"herodb_METHOD","params":[...]}'
 | 
						|
```
 | 
						|
 | 
						|
---
 | 
						|
 | 
						|
## Scenario 1: Local Embedding Model (Testing)
 | 
						|
 | 
						|
Run your own embedding service locally for development, testing, or privacy.
 | 
						|
 | 
						|
### Option A: Python Mock Server (Simplest)
 | 
						|
 | 
						|
This creates a minimal OpenAI-compatible embedding server for testing.
 | 
						|
 | 
						|
**1. Create `mock_embedder.py`:**
 | 
						|
 | 
						|
```python
 | 
						|
from flask import Flask, request, jsonify
 | 
						|
import numpy as np
 | 
						|
 | 
						|
app = Flask(__name__)
 | 
						|
 | 
						|
@app.route('/v1/embeddings', methods=['POST'])
 | 
						|
def embeddings():
 | 
						|
    """OpenAI-compatible embeddings endpoint"""
 | 
						|
    data = request.json
 | 
						|
    inputs = data.get('input', [])
 | 
						|
    
 | 
						|
    # Handle both single string and array
 | 
						|
    if isinstance(inputs, str):
 | 
						|
        inputs = [inputs]
 | 
						|
    
 | 
						|
    # Generate deterministic 768-dim embeddings (hash-based)
 | 
						|
    embeddings = []
 | 
						|
    for text in inputs:
 | 
						|
        # Simple hash to vector (deterministic)
 | 
						|
        vec = np.zeros(768)
 | 
						|
        for i, char in enumerate(text[:768]):
 | 
						|
            vec[i % 768] += ord(char) / 255.0
 | 
						|
        
 | 
						|
        # L2 normalize
 | 
						|
        norm = np.linalg.norm(vec)
 | 
						|
        if norm > 0:
 | 
						|
            vec = vec / norm
 | 
						|
        
 | 
						|
        embeddings.append(vec.tolist())
 | 
						|
    
 | 
						|
    return jsonify({
 | 
						|
        "data": [{"embedding": emb, "index": i} for i, emb in enumerate(embeddings)],
 | 
						|
        "model": data.get('model', 'mock-local'),
 | 
						|
        "usage": {"total_tokens": sum(len(t) for t in inputs)}
 | 
						|
    })
 | 
						|
 | 
						|
if __name__ == '__main__':
 | 
						|
    print("Starting mock embedding server on http://127.0.0.1:8081")
 | 
						|
    app.run(host='127.0.0.1', port=8081, debug=False)
 | 
						|
```
 | 
						|
 | 
						|
**2. Install dependencies and run:**
 | 
						|
 | 
						|
```bash
 | 
						|
pip install flask numpy
 | 
						|
python mock_embedder.py
 | 
						|
```
 | 
						|
 | 
						|
Output: `Starting mock embedding server on http://127.0.0.1:8081`
 | 
						|
 | 
						|
**3. Test the server (optional):**
 | 
						|
 | 
						|
```bash
 | 
						|
curl -X POST http://127.0.0.1:8081/v1/embeddings \
 | 
						|
  -H "Content-Type: application/json" \
 | 
						|
  -d '{"input":["hello world"],"model":"test"}'
 | 
						|
```
 | 
						|
 | 
						|
You should see a JSON response with a 768-dimensional embedding.
 | 
						|
 | 
						|
### End-to-End Example with Local Model
 | 
						|
 | 
						|
**Step 1: Create a Lance database**
 | 
						|
 | 
						|
JSON-RPC:
 | 
						|
```json
 | 
						|
{
 | 
						|
  "jsonrpc": "2.0",
 | 
						|
  "id": 1,
 | 
						|
  "method": "herodb_createDatabase",
 | 
						|
  "params": [
 | 
						|
    "Lance",
 | 
						|
    { "name": "local-vectors", "storage_path": null, "max_size": null, "redis_version": null },
 | 
						|
    null
 | 
						|
  ]
 | 
						|
}
 | 
						|
```
 | 
						|
 | 
						|
Expected response:
 | 
						|
```json
 | 
						|
{"jsonrpc":"2.0","id":1,"result":1}
 | 
						|
```
 | 
						|
 | 
						|
The database ID is `1`.
 | 
						|
 | 
						|
**Step 2: Configure embedding for the dataset**
 | 
						|
 | 
						|
JSON-RPC:
 | 
						|
```json
 | 
						|
{
 | 
						|
  "jsonrpc": "2.0",
 | 
						|
  "id": 2,
 | 
						|
  "method": "herodb_lanceSetEmbeddingConfig",
 | 
						|
  "params": [
 | 
						|
    1,
 | 
						|
    "products",
 | 
						|
    {
 | 
						|
      "provider": "openai",
 | 
						|
      "model": "mock-local",
 | 
						|
      "dim": 768,
 | 
						|
      "endpoint": "http://127.0.0.1:8081/v1/embeddings",
 | 
						|
      "headers": {
 | 
						|
        "Authorization": "Bearer dummy"
 | 
						|
      },
 | 
						|
      "timeout_ms": 30000
 | 
						|
    }
 | 
						|
  ]
 | 
						|
}
 | 
						|
```
 | 
						|
 | 
						|
Redis-like:
 | 
						|
```bash
 | 
						|
redis-cli -p 6379
 | 
						|
SELECT 1
 | 
						|
LANCE.EMBEDDING CONFIG SET products PROVIDER openai MODEL mock-local DIM 768 ENDPOINT http://127.0.0.1:8081/v1/embeddings HEADER Authorization "Bearer dummy" TIMEOUTMS 30000
 | 
						|
```
 | 
						|
 | 
						|
Expected response:
 | 
						|
```json
 | 
						|
{"jsonrpc":"2.0","id":2,"result":true}
 | 
						|
```
 | 
						|
 | 
						|
**Step 3: Verify configuration**
 | 
						|
 | 
						|
JSON-RPC:
 | 
						|
```json
 | 
						|
{
 | 
						|
  "jsonrpc": "2.0",
 | 
						|
  "id": 3,
 | 
						|
  "method": "herodb_lanceGetEmbeddingConfig",
 | 
						|
  "params": [1, "products"]
 | 
						|
}
 | 
						|
```
 | 
						|
 | 
						|
Redis-like:
 | 
						|
```bash
 | 
						|
LANCE.EMBEDDING CONFIG GET products
 | 
						|
```
 | 
						|
 | 
						|
Expected: Returns your configuration with provider, model, dim, endpoint, etc.
 | 
						|
 | 
						|
**Step 4: Insert product data**
 | 
						|
 | 
						|
JSON-RPC (item 1):
 | 
						|
```json
 | 
						|
{
 | 
						|
  "jsonrpc": "2.0",
 | 
						|
  "id": 4,
 | 
						|
  "method": "herodb_lanceStoreText",
 | 
						|
  "params": [
 | 
						|
    1,
 | 
						|
    "products",
 | 
						|
    "item-1",
 | 
						|
    "Waterproof hiking boots with ankle support and aggressive tread",
 | 
						|
    { "brand": "TrailMax", "category": "footwear", "price": "129.99" }
 | 
						|
  ]
 | 
						|
}
 | 
						|
```
 | 
						|
 | 
						|
Redis-like:
 | 
						|
```bash
 | 
						|
LANCE.STORE products ID item-1 TEXT "Waterproof hiking boots with ankle support and aggressive tread" META brand TrailMax category footwear price 129.99
 | 
						|
```
 | 
						|
 | 
						|
JSON-RPC (item 2):
 | 
						|
```json
 | 
						|
{
 | 
						|
  "jsonrpc": "2.0",
 | 
						|
  "id": 5,
 | 
						|
  "method": "herodb_lanceStoreText",
 | 
						|
  "params": [
 | 
						|
    1,
 | 
						|
    "products",
 | 
						|
    "item-2",
 | 
						|
    "Lightweight running shoes with breathable mesh upper",
 | 
						|
    { "brand": "SpeedFit", "category": "footwear", "price": "89.99" }
 | 
						|
  ]
 | 
						|
}
 | 
						|
```
 | 
						|
 | 
						|
JSON-RPC (item 3):
 | 
						|
```json
 | 
						|
{
 | 
						|
  "jsonrpc": "2.0",
 | 
						|
  "id": 6,
 | 
						|
  "method": "herodb_lanceStoreText",
 | 
						|
  "params": [
 | 
						|
    1,
 | 
						|
    "products",
 | 
						|
    "item-3",
 | 
						|
    "Insulated winter jacket with removable hood and multiple pockets",
 | 
						|
    { "brand": "WarmTech", "category": "outerwear", "price": "199.99" }
 | 
						|
  ]
 | 
						|
}
 | 
						|
```
 | 
						|
 | 
						|
JSON-RPC (item 4):
 | 
						|
```json
 | 
						|
{
 | 
						|
  "jsonrpc": "2.0",
 | 
						|
  "id": 7,
 | 
						|
  "method": "herodb_lanceStoreText",
 | 
						|
  "params": [
 | 
						|
    1,
 | 
						|
    "products",
 | 
						|
    "item-4",
 | 
						|
    "Camping tent for 4 people with waterproof rainfly",
 | 
						|
    { "brand": "OutdoorPro", "category": "camping", "price": "249.99" }
 | 
						|
  ]
 | 
						|
}
 | 
						|
```
 | 
						|
 | 
						|
Expected response for each: `{"jsonrpc":"2.0","id":N,"result":true}`
 | 
						|
 | 
						|
**Step 5: Search by text query**
 | 
						|
 | 
						|
JSON-RPC:
 | 
						|
```json
 | 
						|
{
 | 
						|
  "jsonrpc": "2.0",
 | 
						|
  "id": 8,
 | 
						|
  "method": "herodb_lanceSearchText",
 | 
						|
  "params": [
 | 
						|
    1,
 | 
						|
    "products",
 | 
						|
    "boots for hiking in wet conditions",
 | 
						|
    3,
 | 
						|
    null,
 | 
						|
    ["brand", "category", "price"]
 | 
						|
  ]
 | 
						|
}
 | 
						|
```
 | 
						|
 | 
						|
Redis-like:
 | 
						|
```bash
 | 
						|
LANCE.SEARCH products K 3 QUERY "boots for hiking in wet conditions" RETURN 3 brand category price
 | 
						|
```
 | 
						|
 | 
						|
Expected response:
 | 
						|
```json
 | 
						|
{
 | 
						|
  "jsonrpc": "2.0",
 | 
						|
  "id": 8,
 | 
						|
  "result": {
 | 
						|
    "results": [
 | 
						|
      {
 | 
						|
        "id": "item-1",
 | 
						|
        "score": 0.234,
 | 
						|
        "meta": {
 | 
						|
          "brand": "TrailMax",
 | 
						|
          "category": "footwear",
 | 
						|
          "price": "129.99"
 | 
						|
        }
 | 
						|
      },
 | 
						|
      ...
 | 
						|
    ]
 | 
						|
  }
 | 
						|
}
 | 
						|
```
 | 
						|
 | 
						|
**Step 6: Search with metadata filter**
 | 
						|
 | 
						|
JSON-RPC:
 | 
						|
```json
 | 
						|
{
 | 
						|
  "jsonrpc": "2.0",
 | 
						|
  "id": 9,
 | 
						|
  "method": "herodb_lanceSearchText",
 | 
						|
  "params": [
 | 
						|
    1,
 | 
						|
    "products",
 | 
						|
    "comfortable shoes for running",
 | 
						|
    5,
 | 
						|
    "category = 'footwear'",
 | 
						|
    null
 | 
						|
  ]
 | 
						|
}
 | 
						|
```
 | 
						|
 | 
						|
Redis-like:
 | 
						|
```bash
 | 
						|
LANCE.SEARCH products K 5 QUERY "comfortable shoes for running" FILTER "category = 'footwear'"
 | 
						|
```
 | 
						|
 | 
						|
This returns only items where `category` equals `'footwear'`.
 | 
						|
 | 
						|
**Step 7: List datasets**
 | 
						|
 | 
						|
JSON-RPC:
 | 
						|
```json
 | 
						|
{
 | 
						|
  "jsonrpc": "2.0",
 | 
						|
  "id": 10,
 | 
						|
  "method": "herodb_lanceList",
 | 
						|
  "params": [1]
 | 
						|
}
 | 
						|
```
 | 
						|
 | 
						|
Redis-like:
 | 
						|
```bash
 | 
						|
LANCE.LIST
 | 
						|
```
 | 
						|
 | 
						|
**Step 8: Get dataset info**
 | 
						|
 | 
						|
JSON-RPC:
 | 
						|
```json
 | 
						|
{
 | 
						|
  "jsonrpc": "2.0",
 | 
						|
  "id": 11,
 | 
						|
  "method": "herodb_lanceInfo",
 | 
						|
  "params": [1, "products"]
 | 
						|
}
 | 
						|
```
 | 
						|
 | 
						|
Redis-like:
 | 
						|
```bash
 | 
						|
LANCE.INFO products
 | 
						|
```
 | 
						|
 | 
						|
Returns dimension, row count, and other metadata.
 | 
						|
 | 
						|
---
 | 
						|
 | 
						|
## Scenario 2: OpenAI API
 | 
						|
 | 
						|
Use OpenAI's production embedding service for semantic search.
 | 
						|
 | 
						|
### Setup
 | 
						|
 | 
						|
**1. Set your API key:**
 | 
						|
 | 
						|
```bash
 | 
						|
export OPENAI_API_KEY="sk-your-actual-openai-key-here"
 | 
						|
```
 | 
						|
 | 
						|
**2. Start HeroDB** (same as before):
 | 
						|
 | 
						|
```bash
 | 
						|
./target/release/herodb --dir ./data --admin-secret my-admin-secret --enable-rpc --rpc-port 8080
 | 
						|
```
 | 
						|
 | 
						|
### End-to-End Example with OpenAI
 | 
						|
 | 
						|
**Step 1: Create a Lance database**
 | 
						|
 | 
						|
JSON-RPC:
 | 
						|
```json
 | 
						|
{
 | 
						|
  "jsonrpc": "2.0",
 | 
						|
  "id": 1,
 | 
						|
  "method": "herodb_createDatabase",
 | 
						|
  "params": [
 | 
						|
    "Lance",
 | 
						|
    { "name": "openai-vectors", "storage_path": null, "max_size": null, "redis_version": null },
 | 
						|
    null
 | 
						|
  ]
 | 
						|
}
 | 
						|
```
 | 
						|
 | 
						|
Expected: `{"jsonrpc":"2.0","id":1,"result":1}` (database ID = 1)
 | 
						|
 | 
						|
**Step 2: Configure OpenAI embeddings**
 | 
						|
 | 
						|
JSON-RPC:
 | 
						|
```json
 | 
						|
{
 | 
						|
  "jsonrpc": "2.0",
 | 
						|
  "id": 2,
 | 
						|
  "method": "herodb_lanceSetEmbeddingConfig",
 | 
						|
  "params": [
 | 
						|
    1,
 | 
						|
    "documents",
 | 
						|
    {
 | 
						|
      "provider": "openai",
 | 
						|
      "model": "text-embedding-3-small",
 | 
						|
      "dim": 1536,
 | 
						|
      "endpoint": null,
 | 
						|
      "headers": {},
 | 
						|
      "timeout_ms": 30000
 | 
						|
    }
 | 
						|
  ]
 | 
						|
}
 | 
						|
```
 | 
						|
 | 
						|
Redis-like:
 | 
						|
```bash
 | 
						|
redis-cli -p 6379
 | 
						|
SELECT 1
 | 
						|
LANCE.EMBEDDING CONFIG SET documents PROVIDER openai MODEL text-embedding-3-small DIM 1536 TIMEOUTMS 30000
 | 
						|
```
 | 
						|
 | 
						|
Notes:
 | 
						|
- `endpoint` is `null` (defaults to OpenAI API: https://api.openai.com/v1/embeddings)
 | 
						|
- `headers` is empty (Authorization auto-added from OPENAI_API_KEY env var)
 | 
						|
- `dim` is 1536 for text-embedding-3-small
 | 
						|
 | 
						|
Expected: `{"jsonrpc":"2.0","id":2,"result":true}`
 | 
						|
 | 
						|
**Step 3: Insert documents**
 | 
						|
 | 
						|
JSON-RPC:
 | 
						|
```json
 | 
						|
{
 | 
						|
  "jsonrpc": "2.0",
 | 
						|
  "id": 3,
 | 
						|
  "method": "herodb_lanceStoreText",
 | 
						|
  "params": [
 | 
						|
    1,
 | 
						|
    "documents",
 | 
						|
    "doc-1",
 | 
						|
    "The quick brown fox jumps over the lazy dog",
 | 
						|
    { "source": "example", "lang": "en", "topic": "animals" }
 | 
						|
  ]
 | 
						|
}
 | 
						|
```
 | 
						|
 | 
						|
```json
 | 
						|
{
 | 
						|
  "jsonrpc": "2.0",
 | 
						|
  "id": 4,
 | 
						|
  "method": "herodb_lanceStoreText",
 | 
						|
  "params": [
 | 
						|
    1,
 | 
						|
    "documents",
 | 
						|
    "doc-2",
 | 
						|
    "Machine learning models require large datasets for training and validation",
 | 
						|
    { "source": "tech", "lang": "en", "topic": "ai" }
 | 
						|
  ]
 | 
						|
}
 | 
						|
```
 | 
						|
 | 
						|
```json
 | 
						|
{
 | 
						|
  "jsonrpc": "2.0",
 | 
						|
  "id": 5,
 | 
						|
  "method": "herodb_lanceStoreText",
 | 
						|
  "params": [
 | 
						|
    1,
 | 
						|
    "documents",
 | 
						|
    "doc-3",
 | 
						|
    "Python is a popular programming language for data science and web development",
 | 
						|
    { "source": "tech", "lang": "en", "topic": "programming" }
 | 
						|
  ]
 | 
						|
}
 | 
						|
```
 | 
						|
 | 
						|
Redis-like:
 | 
						|
```bash
 | 
						|
LANCE.STORE documents ID doc-1 TEXT "The quick brown fox jumps over the lazy dog" META source example lang en topic animals
 | 
						|
LANCE.STORE documents ID doc-2 TEXT "Machine learning models require large datasets for training and validation" META source tech lang en topic ai
 | 
						|
LANCE.STORE documents ID doc-3 TEXT "Python is a popular programming language for data science and web development" META source tech lang en topic programming
 | 
						|
```
 | 
						|
 | 
						|
Expected for each: `{"jsonrpc":"2.0","id":N,"result":true}`
 | 
						|
 | 
						|
**Step 4: Semantic search**
 | 
						|
 | 
						|
JSON-RPC:
 | 
						|
```json
 | 
						|
{
 | 
						|
  "jsonrpc": "2.0",
 | 
						|
  "id": 6,
 | 
						|
  "method": "herodb_lanceSearchText",
 | 
						|
  "params": [
 | 
						|
    1,
 | 
						|
    "documents",
 | 
						|
    "artificial intelligence and neural networks",
 | 
						|
    3,
 | 
						|
    null,
 | 
						|
    ["source", "topic"]
 | 
						|
  ]
 | 
						|
}
 | 
						|
```
 | 
						|
 | 
						|
Redis-like:
 | 
						|
```bash
 | 
						|
LANCE.SEARCH documents K 3 QUERY "artificial intelligence and neural networks" RETURN 2 source topic
 | 
						|
```
 | 
						|
 | 
						|
Expected response (doc-2 should rank highest due to semantic similarity):
 | 
						|
```json
 | 
						|
{
 | 
						|
  "jsonrpc": "2.0",
 | 
						|
  "id": 6,
 | 
						|
  "result": {
 | 
						|
    "results": [
 | 
						|
      {
 | 
						|
        "id": "doc-2",
 | 
						|
        "score": 0.123,
 | 
						|
        "meta": {
 | 
						|
          "source": "tech",
 | 
						|
          "topic": "ai"
 | 
						|
        }
 | 
						|
      },
 | 
						|
      {
 | 
						|
        "id": "doc-3",
 | 
						|
        "score": 0.456,
 | 
						|
        "meta": {
 | 
						|
          "source": "tech",
 | 
						|
          "topic": "programming"
 | 
						|
        }
 | 
						|
      },
 | 
						|
      {
 | 
						|
        "id": "doc-1",
 | 
						|
        "score": 0.789,
 | 
						|
        "meta": {
 | 
						|
          "source": "example",
 | 
						|
          "topic": "animals"
 | 
						|
        }
 | 
						|
      }
 | 
						|
    ]
 | 
						|
  }
 | 
						|
}
 | 
						|
```
 | 
						|
 | 
						|
Note: Lower score = better match (L2 distance).
 | 
						|
 | 
						|
**Step 5: Search with filter**
 | 
						|
 | 
						|
JSON-RPC:
 | 
						|
```json
 | 
						|
{
 | 
						|
  "jsonrpc": "2.0",
 | 
						|
  "id": 7,
 | 
						|
  "method": "herodb_lanceSearchText",
 | 
						|
  "params": [
 | 
						|
    1,
 | 
						|
    "documents",
 | 
						|
    "programming and software",
 | 
						|
    5,
 | 
						|
    "topic = 'programming'",
 | 
						|
    null
 | 
						|
  ]
 | 
						|
}
 | 
						|
```
 | 
						|
 | 
						|
Redis-like:
 | 
						|
```bash
 | 
						|
LANCE.SEARCH documents K 5 QUERY "programming and software" FILTER "topic = 'programming'"
 | 
						|
```
 | 
						|
 | 
						|
This returns only documents where `topic` equals `'programming'`.
 | 
						|
 | 
						|
---
 | 
						|
 | 
						|
 | 
						|
---
 | 
						|
 | 
						|
## Scenario 3: Deterministic Test Embedder (No Network)
 | 
						|
 | 
						|
For CI/offline development, use the built-in test embedder that requires no external service.
 | 
						|
 | 
						|
### Configuration
 | 
						|
 | 
						|
JSON-RPC:
 | 
						|
```json
 | 
						|
{
 | 
						|
  "jsonrpc": "2.0",
 | 
						|
  "id": 1,
 | 
						|
  "method": "herodb_lanceSetEmbeddingConfig",
 | 
						|
  "params": [
 | 
						|
    1,
 | 
						|
    "testdata",
 | 
						|
    {
 | 
						|
      "provider": "test",
 | 
						|
      "model": "dev",
 | 
						|
      "dim": 64,
 | 
						|
      "endpoint": null,
 | 
						|
      "headers": {},
 | 
						|
      "timeout_ms": null
 | 
						|
    }
 | 
						|
  ]
 | 
						|
}
 | 
						|
```
 | 
						|
 | 
						|
Redis-like:
 | 
						|
```bash
 | 
						|
SELECT 1
 | 
						|
LANCE.EMBEDDING CONFIG SET testdata PROVIDER test MODEL dev DIM 64
 | 
						|
```
 | 
						|
 | 
						|
### Usage
 | 
						|
 | 
						|
Use `lanceStoreText` and `lanceSearchText` as in previous scenarios. The embeddings are:
 | 
						|
- Deterministic (same text → same vector)
 | 
						|
- Fast (no network)
 | 
						|
- Not semantic (hash-based, not ML)
 | 
						|
 | 
						|
Perfect for testing the vector storage/search mechanics without external dependencies.
 | 
						|
 | 
						|
---
 | 
						|
 | 
						|
## Advanced: Custom Headers and Timeouts
 | 
						|
 | 
						|
### Example: Local model with custom auth
 | 
						|
 | 
						|
JSON-RPC:
 | 
						|
```json
 | 
						|
{
 | 
						|
  "jsonrpc": "2.0",
 | 
						|
  "id": 1,
 | 
						|
  "method": "herodb_lanceSetEmbeddingConfig",
 | 
						|
  "params": [
 | 
						|
    1,
 | 
						|
    "secure-data",
 | 
						|
    {
 | 
						|
      "provider": "openai",
 | 
						|
      "model": "custom-model",
 | 
						|
      "dim": 512,
 | 
						|
      "endpoint": "http://192.168.1.100:9000/embeddings",
 | 
						|
      "headers": {
 | 
						|
        "Authorization": "Bearer my-local-token",
 | 
						|
        "X-Custom-Header": "value"
 | 
						|
      },
 | 
						|
      "timeout_ms": 60000
 | 
						|
    }
 | 
						|
  ]
 | 
						|
}
 | 
						|
```
 | 
						|
 | 
						|
### Example: OpenAI with explicit API key (not from env)
 | 
						|
 | 
						|
JSON-RPC:
 | 
						|
```json
 | 
						|
{
 | 
						|
  "jsonrpc": "2.0",
 | 
						|
  "id": 1,
 | 
						|
  "method": "herodb_lanceSetEmbeddingConfig",
 | 
						|
  "params": [
 | 
						|
    1,
 | 
						|
    "dataset",
 | 
						|
    {
 | 
						|
      "provider": "openai",
 | 
						|
      "model": "text-embedding-3-small",
 | 
						|
      "dim": 1536,
 | 
						|
      "endpoint": null,
 | 
						|
      "headers": {
 | 
						|
        "Authorization": "Bearer sk-your-key-here"
 | 
						|
      },
 | 
						|
      "timeout_ms": 30000
 | 
						|
    }
 | 
						|
  ]
 | 
						|
}
 | 
						|
```
 | 
						|
 | 
						|
---
 | 
						|
 | 
						|
## Troubleshooting
 | 
						|
 | 
						|
### Error: "Embedding config not set for dataset"
 | 
						|
 | 
						|
**Cause:** You tried to use `lanceStoreText` or `lanceSearchText` without configuring an embedder.
 | 
						|
 | 
						|
**Solution:** Run `lanceSetEmbeddingConfig` first.
 | 
						|
 | 
						|
### Error: "Embedding dimension mismatch: expected X, got Y"
 | 
						|
 | 
						|
**Cause:** The embedding service returned vectors of a different size than configured.
 | 
						|
 | 
						|
**Solution:** 
 | 
						|
- For OpenAI text-embedding-3-small, use `dim: 1536`
 | 
						|
- For your local mock (from this tutorial), use `dim: 768`
 | 
						|
- Check your embedding service's actual output dimension
 | 
						|
 | 
						|
### Error: "Missing API key in env 'OPENAI_API_KEY'"
 | 
						|
 | 
						|
**Cause:** Using OpenAI provider without setting the API key.
 | 
						|
 | 
						|
**Solution:**
 | 
						|
- Set `export OPENAI_API_KEY="sk-..."` before starting HeroDB, OR
 | 
						|
- Pass the key explicitly in headers: `"Authorization": "Bearer sk-..."`
 | 
						|
 | 
						|
### Error: "HTTP request failed" or "Embeddings API error 404"
 | 
						|
 | 
						|
**Cause:** Cannot reach the embedding endpoint.
 | 
						|
 | 
						|
**Solution:**
 | 
						|
- Verify your local server is running: `curl http://127.0.0.1:8081/v1/embeddings`
 | 
						|
- Check the endpoint URL in your config
 | 
						|
- Ensure firewall allows the connection
 | 
						|
 | 
						|
### Error: "ERR DB backend is not Lance"
 | 
						|
 | 
						|
**Cause:** Trying to use LANCE.* commands on a non-Lance database.
 | 
						|
 | 
						|
**Solution:** Create the database with backend "Lance" (see Step 1).
 | 
						|
 | 
						|
### Error: "write permission denied"
 | 
						|
 | 
						|
**Cause:** Database is private and you haven't authenticated.
 | 
						|
 | 
						|
**Solution:** Use `SELECT <db_id> KEY <access-key>` or make the database public via RPC.
 | 
						|
 | 
						|
---
 | 
						|
 | 
						|
## Complete Example Script (Bash + curl)
 | 
						|
 | 
						|
Save as `test_embeddings.sh`:
 | 
						|
 | 
						|
```bash
 | 
						|
#!/bin/bash
 | 
						|
 | 
						|
RPC_URL="http://localhost:8080"
 | 
						|
 | 
						|
# 1. Create Lance database
 | 
						|
curl -X POST $RPC_URL -H "Content-Type: application/json" -d '{
 | 
						|
  "jsonrpc": "2.0",
 | 
						|
  "id": 1,
 | 
						|
  "method": "herodb_createDatabase",
 | 
						|
  "params": ["Lance", {"name": "test-vectors", "storage_path": null, "max_size": null, "redis_version": null}, null]
 | 
						|
}'
 | 
						|
 | 
						|
echo -e "\n"
 | 
						|
 | 
						|
# 2. Configure local embedder
 | 
						|
curl -X POST $RPC_URL -H "Content-Type: application/json" -d '{
 | 
						|
  "jsonrpc": "2.0",
 | 
						|
  "id": 2,
 | 
						|
  "method": "herodb_lanceSetEmbeddingConfig",
 | 
						|
  "params": [1, "products", {
 | 
						|
    "provider": "openai",
 | 
						|
    "model": "mock",
 | 
						|
    "dim": 768,
 | 
						|
    "endpoint": "http://127.0.0.1:8081/v1/embeddings",
 | 
						|
    "headers": {"Authorization": "Bearer dummy"},
 | 
						|
    "timeout_ms": 30000
 | 
						|
  }]
 | 
						|
}'
 | 
						|
 | 
						|
echo -e "\n"
 | 
						|
 | 
						|
# 3. Insert data
 | 
						|
curl -X POST $RPC_URL -H "Content-Type: application/json" -d '{
 | 
						|
  "jsonrpc": "2.0",
 | 
						|
  "id": 3,
 | 
						|
  "method": "herodb_lanceStoreText",
 | 
						|
  "params": [1, "products", "item-1", "Hiking boots", {"brand": "TrailMax"}]
 | 
						|
}'
 | 
						|
 | 
						|
echo -e "\n"
 | 
						|
 | 
						|
# 4. Search
 | 
						|
curl -X POST $RPC_URL -H "Content-Type: application/json" -d '{
 | 
						|
  "jsonrpc": "2.0",
 | 
						|
  "id": 4,
 | 
						|
  "method": "herodb_lanceSearchText",
 | 
						|
  "params": [1, "products", "outdoor footwear", 5, null, null]
 | 
						|
}'
 | 
						|
 | 
						|
echo -e "\n"
 | 
						|
```
 | 
						|
 | 
						|
Run:
 | 
						|
```bash
 | 
						|
chmod +x test_embeddings.sh
 | 
						|
./test_embeddings.sh
 | 
						|
```
 | 
						|
 | 
						|
---
 | 
						|
 | 
						|
## Summary
 | 
						|
 | 
						|
| Provider | Use Case | Endpoint | API Key |
 | 
						|
|----------|----------|----------|---------|
 | 
						|
| `openai` | Production semantic search | Default (OpenAI) or custom URL | OPENAI_API_KEY env or headers |
 | 
						|
| `openai` | Local self-hosted gateway | http://127.0.0.1:8081/... | Optional (depends on your service) |
 | 
						|
| `test` | CI/offline development | N/A (local hash) | None |
 | 
						|
| `image_test` | Image testing | N/A (local hash) | None |
 | 
						|
 | 
						|
**Notes:**
 | 
						|
- The `provider` field is always `"openai"` for OpenAI-compatible services (whether cloud or local). This is because it uses the OpenAI-compatible API shape.
 | 
						|
- Use `endpoint` to point to your local service
 | 
						|
- Use `headers` for custom authentication
 | 
						|
- `dim` must match your embedding service's output dimension
 | 
						|
- Once configured, `lanceStoreText` and `lanceSearchText` handle embedding automatically |