This repository has been archived on 2025-08-04. You can view files and clone it, but cannot push or open issues or pull requests.
rhaj/_archive/rhai_engine/rhaibook/ref/fn-ptr.md
2025-04-04 08:28:07 +02:00

248 lines
7.0 KiB
Markdown

Function Pointers
=================
It is possible to store a _function pointer_ in a variable just like a normal value.
A function pointer is created via the `Fn` function, which takes a [string](strings-chars.md) parameter.
Call a function pointer via the `call` method.
Short-Hand Notation
-------------------
```admonish warning.side "Not for native"
Native Rust functions cannot use this short-hand notation.
```
Having to write `Fn("foo")` in order to create a function pointer to the [function](functions.md)
`foo` is a chore, so there is a short-hand available.
A function pointer to any _script-defined_ [function](functions.md) _within the same script_ can be
obtained simply by referring to the [function's](functions.md) name.
```rust
fn foo() { ... } // function definition
let f = foo; // function pointer to 'foo'
let f = Fn("foo"); // <- the above is equivalent to this
let g = bar; // error: variable 'bar' not found
```
The short-hand notation is particularly useful when passing [functions](functions.md) as
[closure](fn-closure.md) arguments.
```rust
fn is_even(n) { n % 2 == 0 }
let array = [1, 2, 3, 4, 5];
array.filter(is_even);
array.filter(Fn("is_even")); // <- the above is equivalent to this
array.filter(|n| n % 2 == 0); // <- ... or this
```
Built-in Functions
------------------
The following standard methods operate on function pointers.
| Function | Parameter(s) | Description |
| ---------------------------------- | ------------ | -------------------------------------------------------------------------------------------- |
| `name` method and property | _none_ | returns the name of the [function](functions.md) encapsulated by the function pointer |
| `is_anonymous` method and property | _none_ | does the function pointer refer to an [anonymous function](fn-anon.md)? |
| `call` | _arguments_ | calls the [function](functions.md) matching the function pointer's name with the _arguments_ |
Examples
--------
```rust
fn foo(x) { 41 + x }
let func = Fn("foo"); // use the 'Fn' function to create a function pointer
let func = foo; // <- short-hand: equivalent to 'Fn("foo")'
print(func); // prints 'Fn(foo)'
let func = fn_name.Fn(); // <- error: 'Fn' cannot be called in method-call style
func.type_of() == "Fn"; // type_of() as function pointer is 'Fn'
func.name == "foo";
func.call(1) == 42; // call a function pointer with the 'call' method
foo(1) == 42; // <- the above de-sugars to this
call(func, 1); // normal function call style also works for 'call'
let len = Fn("len"); // 'Fn' also works with registered native Rust functions
len.call("hello") == 5;
let fn_name = "hello"; // the function name does not have to exist yet
let hello = Fn(fn_name + "_world");
hello.call(0); // error: function not found - 'hello_world (i64)'
```
```admonish warning "Not First-Class Functions"
Beware that function pointers are _not_ first-class functions.
They are _syntactic sugar_ only, capturing only the _name_ of a [function](functions.md) to call.
They do not hold the actual [functions](functions.md).
The actual [function](functions.md) must be defined in the appropriate namespace for the call to
succeed.
```
~~~admonish warning "Global Namespace Only"
Because of their dynamic nature, function pointers cannot refer to functions in
[`import`](modules/import.md)-ed [modules](modules/index.md).
They can only refer to [functions](functions.md) defined globally within the script
or a built-in function.
```js
import "foo" as f; // assume there is 'f::do_work()'
f::do_work(); // works!
let p = Fn("f::do_work"); // error: invalid function name
fn do_work_now() { // call it from a local function
f::do_work();
}
let p = Fn("do_work_now");
p.call(); // works!
```
~~~
Dynamic Dispatch
----------------
The purpose of function pointers is to enable rudimentary _dynamic dispatch_, meaning to determine,
at runtime, which function to call among a group.
Although it is possible to simulate dynamic dispatch via a number and a large
[`if-then-else-if`](if.md) statement, using function pointers significantly simplifies the code.
```rust
let x = some_calculation();
// These are the functions to call depending on the value of 'x'
fn method1(x) { ... }
fn method2(x) { ... }
fn method3(x) { ... }
// Traditional - using decision variable
let func = sign(x);
// Dispatch with if-statement
if func == -1 {
method1(42);
} else if func == 0 {
method2(42);
} else if func == 1 {
method3(42);
}
// Using pure function pointer
let func = if x < 0 {
method1
} else if x == 0 {
method2
} else if x > 0 {
method3
};
// Dynamic dispatch
func.call(42);
// Using functions map
let map = [ method1, method2, method3 ];
let func = sign(x) + 1;
// Dynamic dispatch
map[func].call(42);
```
Bind the `this` Pointer
-----------------------
When `call` is called as a _method_ but not on a function pointer, it is possible to dynamically dispatch
to a function call while binding the object in the method call to the `this` pointer of the function.
To achieve this, pass the function pointer as the _first_ argument to `call`:
```rust
fn add(x) { // define function which uses 'this'
this += x;
}
let func = add; // function pointer to 'add'
func.call(1); // error: 'this' pointer is not bound
let x = 41;
func.call(x, 1); // error: function 'add (i64, i64)' not found
call(func, x, 1); // error: function 'add (i64, i64)' not found
x.call(func, 1); // 'this' is bound to 'x', dispatched to 'func'
x == 42;
```
Beware that this only works for [_method-call_](fn-method.md) style.
Normal function-call style cannot bind the `this` pointer (for syntactic reasons).
Currying
--------
It is possible to _curry_ a function pointer by providing partial (or all) arguments.
Currying is done via the `curry` keyword and produces a new function pointer which carries the
curried arguments.
When the curried function pointer is called, the curried arguments are inserted starting from the _left_.
The actual call arguments should be reduced by the number of curried arguments.
```rust
fn mul(x, y) { // function with two parameters
x * y
}
let func = mul; // <- de-sugars to 'Fn("mul")'
func.call(21, 2) == 42; // two arguments are required for 'mul'
let curried = func.curry(21); // currying produces a new function pointer which
// carries 21 as the first argument
let curried = curry(func, 21); // function-call style also works
curried.call(2) == 42; // <- de-sugars to 'func.call(21, 2)'
// only one argument is now required
```